Restoration of an Immediate Extraction Site Using a High Silica Quartz Glass Fiber Reinforced Provisional Bridge

A Peer-Reviewed Publication
Written by Ian Shuman DDS, MAGD, AFAAID

Abstract
Following the extraction of a tooth it is frequently ideal to replace it at the same appointment. In instances where a multi-unit fixed prosthesis is the best treatment, an immediate provisional should be fabricated. Due to the length of time needed for the socket to heal completely and achieve its mature contour, a long term provisional must be created. This course will demonstrate the steps needed to fabricate a long term provisional bridge using a quartz fiber reinforcement material.

Educational Objectives
At the conclusion of this educational activity participants will be able to:
1. Discuss the need for a long term provisional bridge and understand the need for fiber reinforcement
2. Describe the materials and steps needed to create this temporary prosthesis
3. Restore an immediate extraction site with a fiber reinforced provisional bridge using the materials outlined with the steps discussed

Author Profile
Ian Shuman DDS, MAGD, AFAAID maintains a full-time general, reconstructive, and aesthetic dental practice in Pasadena, Maryland. Since 1995 Dr. Shuman has lectured and published on advanced, minimally invasive techniques. He has taught these procedures to thousands of dentists and developed many of the methods. Dr. Shuman has published numerous articles on topics including adhesive resin dentistry, minimally invasive restorative, cosmetic and implant dentistry. He is a Master of the Academy of General Dentistry, an Associate Fellow of the American Academy of Implant Dentistry, a Fellow of the Pierre Fauchard Academy. Dr. Shuman was named one of the Top Clinicians in Continuing Education since 2005, by Dentistry Today.

Author Disclosure
Dr. Ian Shuman has no commercial ties with the sponsors or the providers of the unrestricted educational grant for this course.

Go Green, Go Online to take your course
Educational Objectives
At the conclusion of this educational activity participants will be able to:
1. Discuss the need for a long term provisional bridge and understand the need for fiber reinforcement
2. Describe the materials and steps needed to create this temporary prosthesis
3. Restore an immediate extraction site with a fiber reinforced provisional bridge using the materials outlined with the steps discussed

Abstract
Following the extraction of a tooth it is frequently ideal to replace it at the same appointment. In instances where a multi-unit fixed prosthesis is the best treatment, an immediate provisional should be fabricated. Due to the length of time needed for the socket to heal completely and achieve its mature contour, a long term provisional must be created. This course will demonstrate the steps needed to fabricate a long term provisional bridge using a quartz fiber reinforcement material.

Introduction
Following tooth extraction, there are a variety of methods available for immediate tooth replacement. Choices include implants, full and partial coverage fixed prostheses and removable partial dentures. Regardless of the selected modality, the periodontium will require a healing period prior to delivering the final restoration. To replace the missing tooth at the time of extraction, a long term provisional fixed prosthesis can be placed.

Discussion
In the past, provisional bridges have been fabricated with a variety of reinforcing materials including; acrylic with cast metal,1 resin composite and orthodontic wire,2 composite and post,3 both prefabricated4 and chairside fiber reinforced composite,5-9 among others.

Irrespective of the method used, “when placed immediately after an extraction, the provisional serves as a protective covering over the extraction site, helping prevent debris and contaminants from entering the surgical wound.”10 This allows the surgically altered tissues time to fully mature in preparation for the definitive fixed prosthesis. It also maintains the pontic space and allows the occlusion to remain stable and in harmony. However, provisionalss made of composite or acrylic alone are known to fracture and deteriorate over long periods of time and therefore, strengthening them using a fiber reinforcement material is the key to the long term success of these restorations. The clinical study below used a quartz fiber (Quartz Splint®, RTD) to reinforce the long term provisional.

Fiber: Materials and Properties
There are several types of fiber reinforcement materials available including; polyethylene (Ribbond®, Ribbond Products), E-Glass (everStick® C&B, StickTech Ltd.), fiberglass (F-Splint-Aid®, Polydentia), and quartz glass (Quartz Splint®, RTD). They have replaced metal for a variety of reasons including; strength-to-weight ratios, non-corrosive biocompatibility properties, excellent bonding properties, ease of repair, and economic, convenient chairside use.11 In addition, properties such as ease of handling, retention and esthetics make these ideal resources for chairside treatment.

In a study evaluating the shear bond strength to enamel and flexural strength of different fiber-reinforced composites, Juloski et al. determined that “[the use of reinforcing fibers in combination with flowable composite is beneficial for enhanced resistance to flexural loads. Moreover, the flexural strength of fiber-reinforced composites is influenced by fiber composition and pattern.]”12 Ultimately, the proof of material superiority is the length of time they enhance the structural integrity of the devices into which they are embedded. In a study measuring the survival rates of resin bonded, glass fiber-reinforced composite fixed partial dentures, Vallittu showed a functional survival rate of 93% after rebonding or repairing with a mean survival time of 55 months.13 Other studies have shown an astonishing five-year survival rate of 3 unit fiber-reinforced composite fixed partial dentures.14

To maximize longevity, selecting the correct fiber product is crucial as there is a wide variation between products including; flexural strength, rigidity, architecture, surface treatment and methods used for incorporating polymeric resin. Also, there are significant differences in the chairside techniques required for handling and processing.

Quartz Fiber: Prosthetic Reinforcement
There is a considerable body of research on the topic of using quartz fibers to reinforce a wide variety of dental prostheses. A study by Berthold et al. demonstrated that quartz fiber splints offer superior rigidity and flexure compared with wire-composite splints.15 Yapp and Powers evaluated the flexural strength and modulus of the splinting materials previously mentioned. They found that quartz splints were the strongest and stiffest of the four materials with a flexural strength and modulus of 631 MPa and 24.0 GPa respectively.16 This was nearly a 40% increase over the other materials studied.

The Challenge
The challenge is to fabricate the provisional restoration directly without contaminating the surgical site as well as curing the fiber reinforced provisional material itself. Ideally, a method of temporization prior to extraction allows for direct fabrication in a bloodless field, preventing contamination of the provisional material itself. The following case demon-
strates the ease with which a fixed provisional restoration can be fabricated directly in the mouth using the patient’s pre-existing occlusal pattern and tooth morphology without contaminating the socket or surgical site. In addition, this technique employs a method whereby the provisional is further strengthened using a high silica quartz fiber reinforcement material, allowing it to function for many months during the healing phase.

Case Report
The patient, a 45-year-old female presented with a history of pain when chewing in the upper left premolar area. Examination revealed that the upper left second premolar had root canal therapy, with a stainless steel post, core and crown (Figure 1). Due to non-restorable caries it was determined that the tooth be extracted and the site restored. The patient did not want an implant; therefore the most ideal treatment plan would be a traditional fixed prosthesis from the first premolar to first molar.

The patient was appointed and the site anesthetized. The temporization technique for this case employed the use of a posterior triple tray. An impression was made of the preoperative site using a polyvinyl siloxane impression material. The interproximal areas of the impression were opened up using college pliers (Figure 2). This was followed by removal of the crowns, core restoration and preparation of the abutment molar and premolar. The remaining coronal structure of the second premolar was reduced down to the gingivo-alveolar area with a concave shaped preparation made in the pulpal floor (Figure 3). This was created in order to mimic the gingival aspect of the future pontic shape following extraction. Prior to extraction of the tooth, the long term 3 unit fiber-reinforced provisional could now be fabricated directly in the mouth in a bloodless environment.

Quartz splint materials are available in various fiber architectures (unidirectional, woven, braided rope, mesh, etc). Each has properties and contents that allow for a wide range of mechanical and handling characteristics in fiber reinforced composites. Although the unidirectional splint material could have been used in this case, the woven quartz splint material was easier to manipulate and shape for this type of procedure. The appropriate amount of ready-to-use fibers are selected, measured and cut to length (Figure 4).

An auto-cure bis-acryl composite temporary restorative material was dispensed into the intaglio of the triple tray impression and the woven quartz splint fiber gently submerged into the uncured composite (Figures 5, 6). The quartz splint material used is in this case is pre-wetted at the factory. This feature offers enhanced accuracy, convenience, consistency and quality.

The filled triple tray was seated to place intraorally and the patient was instructed to close into occlusion. Following the 2 minute setting time, the triple tray containing the
temporary bridge was removed (Figure 7). Note that the woven quartz splint became invisible once incorporated into the cured bis-acryl material (Figures 8, 9). Following trimming, (Figures 10,11) the provisional was tried in the mouth and the fit evaluated. The occlusion was checked, adjusted as needed and polished. At this point, the root of the upper left second premolar was extracted (Figure 12). The socket was debrided, filled with a resorbable hemostatic sponge and sutured with 4.0 chromic gut (Figure 13). The quartz glass reinforced provisional restoration was luted with temporary cement (Figure 14). Several months later, the patient was seen for evaluation of the site and for enhancement of the pontic as needed (Figure 15).

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.
Conclusion
While clinical performance is still the final determinant of success, flexure is still the most widely reported mechanical property, and test results are useful in developing and selecting new materials for clinical use and for comparing products. It has been demonstrated that the use of a well-formed provisional restoration offers the ability to maintain oral health and promote healing of a surgical site. Using the technique of a fiber-reinforced, directly fabricated provisional restoration prior to extraction is a simple, elegant way to provide this type of care. The technique demonstrated in this case report is simple, reliable and repeatable.

Bibliography

Author profile
Ian Shuman DDS, MAGD, AFAAID maintains a full-time general, reconstructive, and aesthetic dental practice in Pasadena, Maryland. Since 1995 Dr. Shuman has lectured and published on advanced, minimally invasive techniques. He has taught these procedures to thousands of dentists and developed many of the methods. Dr. Shuman has published numerous articles on topics including adhesive resin dentistry, minimally invasive restorative, cosmetic and implant dentistry. He is a Master of the Academy of General Dentistry, an Associate Fellow of the American Academy of Implant Dentistry, a Fellow of the Pierre Fauchard Academy. Dr. Shuman was named one of the Top Clinicians in Continuing Education since 2005, by Dentistry Today.

Author Disclosure
Dr. Ian Shuman has no commercial ties with the sponsors or the providers of the unrestricted educational grant for this course.
Questions

1. Following tooth extraction, the choices for immediate tooth replacement include all of the following except:
 a. Implants
 b. Full coverage fixed prostheses
 c. Partial coverage fixed prostheses
 d. Trans-periodontal crown

2. Which of the following reinforcing materials have been used with provisional bridges?
 a. Fiber-reinforced composite
 b. Resin composite and orthodontic wire
 c. Acrylic with cast metal
 d. All of the above

3. Which of the following serves as a protective covering over an extraction site?
 a. Gelatin matrix
 b. Provisional restoration
 c. Sutures
 d. Gauze pad

4. Which of the following reinforcement materials is the key to the success of long term provisionals?
 a. Cast metal
 b. Nickel titanium wire
 c. Fiber
 d. Metal mesh

5. The clinical case study used which type of fiber?
 a. E-Glass
 b. Polyethylene
 c. Quartz
 d. Fiberglass

6. Fiber has replaced metal as a reinforcement material for all of the following except:
 a. Biocompatibility
 b. Corrosiveness
 c. Strength-to-weight ratios
 d. Ease of repair

7. Which of the following conducted a study evaluating shear bond strength to enamel and flexural strength of different fiber-reinforced composites?
 a. Stacey
 b. Samson
 c. Juloski
 d. Edward

8. Research has demonstrated survival rates for 3 unit fiber-reinforced composite fixed partial dentures as long as:
 a. 2 years
 b. 3 years
 c. 5 months
 d. 5 years

9. Variations in the properties of fiber products include:
 a. Architecture
 b. Rigidity
 c. Flexural strength
 d. All of the above

10. Ideally, a method of temporization prior to extraction allows for:
 a. Direct fabrication in a bloody field
 b. Preventing contamination of the provisional restoration
 c. Direct fabrication in a contaminated field
 d. None of the above

11. When fabricating a direct provisional restoration the challenge is to avoid contaminating the:
 a. Cured provisional
 b. Surgical site
 c. Uncured provisional
 d. All of the above

12. Which of the following preparation shapes was provided for the tooth to be extracted?
 a. Convex
 b. Concave
 c. Oblong
 d. None of the above

13. Immediate placement of a provisional restoration provides:
 a. Adequate time for healing
 b. Maintenance of pontic space
 c. Stable occlusion
 d. All of the above

14. Provisional restorations made only of composite or acrylic:
 a. Have the same strength as reinforced provisional
 b. Have the same longevity as reinforced provisional
 c. Are more time consuming to fabricate than reinforced provisional
 d. None of the above

15. In a study measuring the survival rates of resin bonded, glass fiber-reinforced composite fixed partial dentures, which of the following showed a functional survival rate of 93% after rebonding or repairing?
 a. Vallittu
 b. Anthony
 c. Faird
 d. Fries

16. In the clinical case discussed, what type of bis-acryl composite temporary restorative material was used?
 a. Light cure
 b. Dual cure
 c. Auto cure
 d. None of the above

17. Once incorporated into the cured bis-acryl material, the woven quartz splint material became:
 a. Invisible
 b. Visible
 c. Opaque
 d. Bioluminescent

18. Pre-wetting the quartz splint at the manufacture level provides which of the following properties?
 a. Accuracy
 b. Convenience
 c. Quality
 d. All of the above

19. A study by Berthold demonstrated that quartz-fiber splints offer superior rigidity and flexure compared with splints made from:
 a. Composite alone
 b. Non-precious alloy
 c. Wire-composite
 d. Ceramic mesh

20. When placed immediately after an extraction, the provisional restoration:
 a. Serves as a protective covering
 b. Helps protect the extraction site from debris
 c. Both a and b
 d. None of the above
Restoration of an Immediate Extraction Site Using a High Silica Quartz Glass Fiber Reinforced Provisional Bridge

Educational Objectives

1. Discuss the need for a long-term provisional bridge and understand the need for fiber reinforcement.
2. Describe the materials and steps needed to create this temporary prosthesis.
3. Have the ability to restore an immediate extraction site with a fiber reinforced provisional bridge using the materials outlined with the steps discussed.

Course Evaluation

1. Were the individual course objectives met?
 - Objective #1: Yes No
 - Objective #2: Yes No
 - Objective #3: Yes No
 Please evaluate this course by responding to the following statements, using a scale of Excellent = 5 to Poor = 0:
 1. How would you rate the objectives and educational methods? 5 4 3 2 1 0
 2. How do you rate the author's grasp of the topic? 5 4 3 2 1 0
 3. How do you rate the instructor's effectiveness? 5 4 3 2 1 0
 4. How was the overall administration of the course effective? 5 4 3 2 1 0
 5. How do you rate the author's grasp of the topic? 5 4 3 2 1 0
 6. Please rate the rate of the course materials. 5 4 3 2 1 0
 7. Was the overall administration of the course effective? 5 4 3 2 1 0
 8. Please rate the usefulness and clinical applicability of this course. 5 4 3 2 1 0
 9. Please rate the usefulness of the supplemental weblogophy. 5 4 3 2 1 0
 10. Do you feel that the references were adequate? Yes No
 11. Would you participate in a similar program on a different topic? Yes No
 12. If any of the continuing education questions were unclear or ambiguous, please list them.
 13. Was there any subject matter you found confusing? Please describe.
 14. How long did it take you to complete this course?
 15. What additional continuing dental education topics would you like to see?
 16. How do you rate the author's grasp of the topic? 5 4 3 2 1 0
 17. How do you rate the author's grasp of the topic? 5 4 3 2 1 0
 18. How do you rate the author's grasp of the topic? 5 4 3 2 1 0
 19. How do you rate the author's grasp of the topic? 5 4 3 2 1 0
 20. How do you rate the author's grasp of the topic? 5 4 3 2 1 0

Please photocopy answer sheet for additional participants.

Customer Service 216.398.7822