The Beneficial Effects of a Supersaturated Calcium Phosphate Rinse on the Oral Cavity in Xerostomia Patients

A Peer-Reviewed Publication
Written by Eugene Z Levin, DDS

Abstract
There are many beneficial effects of supersaturated calcium phosphate rinse for the xerostomia patient. Both calcium phosphate and sodium bicarbonate ions found in supersaturated calcium phosphate rinse play significant roles in healing and protecting tissues of the oral cavity. Supersaturated calcium phosphate rinse is not a cure for xerostomia, but it is one of the most powerful adjuncts in the care and treatment of the wide variety of symptoms and severities of dry mouth associated with xerostomia patients.

Educational Objectives:
At the conclusion of this educational activity participants will be able to:
1. Differentiate the contents of supersaturated calcium phosphate rinses
2. Explain the effects of supersaturated calcium rinse on soft and hard tissues
3. Formulate patient recommendations to manage and maintain oral health using supersaturated calcium phosphate rinse in the xerostomic and other at risk patients as well.

Author Profile
Eugene Z Levin DDS, Loyola University of Chicago Dental School (1988), Private Practice : Regency Dental Care, Palatine IL (1991 – present). Electronic address : DRLevin@RegencyDentalCare.com

Author Disclosure
Eugene Z Levin DDS has no potential conflicts of interest to disclose.

Publication date: May 2014
Expiration date: April 2017

This course has been made possible through an unrestricted educational grant from Invado Pharmaceuticals.
This course was written for dentists, dental hygienists and assistants, from novice to skilled.

Educational Methods:
This course is a self-instructional journal and web activity.

Provider Disclosure:
PennWell does not have a leadership position or a commercial interest in any products or services discussed or shared in this educational activity nor with the commercial supporter. No manufacturer or third party has had any input into the development of course content.

Requirements for Successful Completion:
To obtain 2 CE credits for this educational activity you must pay the required fee, review the material, complete the course evaluation and obtain a score of at least 70%.

CE Planner Disclosure:
Heather Hodges, CE Coordinator does not have a leadership or commercial interest with products or services discussed in this educational activity. Heather can be reached at hhodges@pennwell.com

Educational Disclaimer:
Completing a single continuing education course does not provide enough information to result in the participant being an expert in the field related to the course topic. It is a combination of many educational courses and clinical experience that allows the participant to develop skills and expertise.

Image Authenticity Statement:
The images in this educational activity have not been altered.

Scientific Integrity Statement:
Information shared in this CE course is developed from clinical research and represents the most current information available from evidence-based dentistry.

Known Benefits and Limitations of the Data:
The information presented in this educational activity is derived from the data and information contained in reference section. The research data is extensive and provides direct benefit to the patient and improvements in oral health.

Registration:
The cost of this CE course is $49.00 for 2 CE credits.

Cancellation/Refund Policy: Any participant who is not 100% satisfied with this course can request a full refund by contacting PennWell in writing.
Educational Objectives:
At the conclusion of this educational activity participants will be able to:
1. Differentiate the contents of supersaturated calcium phosphate rinses
2. Explain the effects of supersaturated calcium rinse on soft and hard tissues
3. Formulate patient recommendations to manage and maintain oral health using supersaturated calcium phosphate rinse in the xerostomic and other at risk patients as well.

Abstract
There are many beneficial effects of supersaturated calcium phosphate rinse for the xerostomia patient. Both calcium phosphate and sodium bicarbonate ions found in supersaturated calcium phosphate rinse play significant roles in healing and protecting tissues of the oral cavity. Supersaturated calcium phosphate rinse is not a cure for xerostomia, but it is one of the most powerful adjuncts in the care and treatment of the wide variety of symptoms and severities associated with xerostomia patients.

Supersaturated calcium phosphate rinse (SSCP) is a highly concentrated electrolyte solution resembling human saliva, designed to moisten, lubricate and cleanse the oral cavity and promote the health of the oral tissues. These rinses may contain sodium phosphate, calcium chloride, sodium chloride, and sodium bicarbonate. These commercially available products were developed for the purpose of preventing and treating xerostomia and oral mucositis secondary to head and neck radiation and chemotherapy. One product contains sodium phosphate, calcium chloride and sodium chloride, supplied as two ampules of aqueous solution. Each ampule, one containing calcium and one containing phosphate, is opened and mixed in a container. The patient is then instructed to rinse with the solution and spit out.1 Another product contains sodium phosphate, calcium chloride, sodium chloride and also sodium bicarbonate. It is supplied as a unit-dosed powder which is then mixed with a specified amount of water in order to create a supersaturated rinse. The patient then rinses with half the mixed solution for 1 minute, spits out and repeats with the second half. This process is repeated from 2-10 times per day as recommended by the prescriber.2

The addition of sodium bicarbonate to supersaturated calcium phosphate rinse adds a significant salivary buffering quality, making this rinse most effective for radiation induced xerostomia and mucositis and also allows for an added versatility of effectiveness for patients outside the realm of radiation induced xerostomia and mucositis. This course discusses data pertinent to the supersaturated calcium phosphate rinse containing sodium bicarbonate.

Saliva
Human saliva is the most important biological factor affecting the health of the soft and hard tissues of the oral cavity. Saliva plays a critical role in the maintenance of optimum oral health and the creation of an appropriate ecologic balance. The components and properties of saliva play a protective role that drives the development of natural preventative measures. The functions of saliva include:
- Lubrication and protection of oral tissues
- Buffering action and clearance of acid
- Maintenance of tooth integrity
- Antibacterial activity
- Digestion and taste

The characteristics of the saliva have a great impact on the oral environment. Cariogenic bacteria live in the mouth (S.mutans) and saliva directly impacts their growth and survival.

Saliva is secreted by three major pairs of salivary glands (parotid, submandibular, and sublingual) plus numerous minor salivary glands.3 Saliva is made up of many components, both inorganic and organic. These include electrolytes as well as proteins, immunoglobulins, enzymes, mucins, urea, and ammonia. The components in saliva help to modulate 1) the bacterial attachment in oral plaque biofilm, 2) the pH and buffering capacity of saliva, 3) antibacterial properties, and 4) tooth surface remineralization and demineralization.

The inorganic components include sodium bicarbonate, which aids in the buffering capacity of saliva. Additionally, there are calcium and phosphate ions in a supersaturated state with the highest concentration in the plaque biofilm4 which allow for the maintenance of tooth mineral integrity and promotion of soft tissue healing by permeating the epithelium of injured tissues.5 The organic components of saliva consist mainly of proteins and glycoproteins. Most of the proteins are rich in proline (proline-rich proteins or PRPs) which comprise 70% of the total protein. Most of the remaining salivary protein content is amylase. Other proteins such as lysozyme, lactoferrin, peroxidase and secretory IgA, are relatively minor components.6

Supersaturated calcium phosphate rinse contains the same inorganic components that are present in natural saliva; calcium, phosphate and sodium bicarbonate. It contains no organic components; however, it is largely the inorganic components of natural saliva that benefit the health of the oral tissues. The same healing properties of saliva are characterized in the use of supersaturated calcium phosphate rinse.5,25

The sodium bicarbonate component acts as a buffering agent. This is important because the salivary pH in a xerostomia compromised oral cavity is commonly acidic, having a pH of 6.4 or less. S. mutans bacteria thrive in an acidic environment. In xerostomic patients it is not uncommon to see elevated levels of S. mutans bacteria,
often exceeding 500,000 colony-forming units (CFU). The elevated levels of S. mutans increase the risk for dental caries. By buffering the salivary pH, the levels of S. mutans are controlled and returned to lower risk levels (<500,000 CFU). Buffering the salivary pH also allows for less erosive tissue lesions.17

The calcium and phosphate ions keep mineral concentrations at levels that maintain and strengthen tooth structure. They also promote healing of soft tissues by penetrating the intercellular spaces and permeating the xerostomic injured epithelial tissues.

**Xerostomia**

Xerostomia is defined as dry mouth resulting from reduced or absent salivary flow. Xerostomia is not a disease, but it may be a symptom of various medical conditions, radiation of the head and neck, or a side effect of a wide variety of medications.

It is also a common complaint of older adults, affecting approximately 20% of the elderly population. However, xerostomia does not appear to be related to age itself. It is likely due to prescription medications that have dry mouth as a side effect.7

Xerostomia has many etiologies, varying degrees of severity and may affect other age groups in addition to the elderly.

Dry mouth is often a contributing factor for both minor and serious health problems. It can affect the nutrition, dental and the psychological health of the affected patient. Common problems associated with xerostomia include; constant sore throat, burning sensation in the mouth, difficulty speaking and swallowing, hoarseness, and/or dry nasal passages.8 It is thought to be a hidden cause of periodontal disease and tooth loss in approximately 30% of adults.9 It is well known that xerostomia, left untreated, decreases the pH of the oral cavity and significantly increases the development of plaque, dental caries and oral candidiasis.10

The signs and symptoms of xerostomia include patient complaints relating to problems eating, speaking, swallowing and wearing dentures. Dry crumbly foods, such as crackers, etc. may be hard to chew and swallow. Complaints may also include soft tissues sticking together such as the lips sticking together or the tongue sticking to the palate, taste disorders (dysgeusia), a burning or painful tongue or mouth and the increased need to drink water, especially at night. Clinical signs may include an increase in dental caries and root caries, fissuring of the lips (angular cheilitis), cracking of the lips, fissuring of the tongue, a generalized erythema throughout the oral cavity, and halitosis.11 Causes of xerostomia include, but are not limited to, radiation/chemotherapy, medications, autoimmune disorders such as Sjogren’s syndrome, sleep habits, and emotional states etc. The symptoms and clinical signs may be singular or multiple and vary in severity depending on the degree of the xerostomia.

Diagnosis of xerostomia may be based on evidence obtained from the patient’s history, an examination of the oral cavity and/or sialometry, a simple office procedure that measures the flow rate of saliva. Xerostomia should be considered if the patient complains of dry mouth, particularly at night, or of difficulty eating dry foods such as crackers.12

The oral mucosa may be dry and sticky or it may appear erythematous due to an overgrowth of candida albicans. The red patches often affect the hard or soft palate and dorsal surface of the tongue. Occasionally, pseudomembranous candidiasis will be present, appearing as removable white plaques on any mucosal surface. There may be little or no pooled saliva in the floor of the mouth, and the tongue may appear dry with decreased numbers of papillae. The saliva may appear stringy, ropy or foamy. Dental caries may be found at the cervical margins or exposed roots of the teeth.10 Several office techniques can be utilized to ascertain the function of salivary glands. In sialometry, or salivary flow measurement, collection devices are used to measure the flow rate of stimulated saliva. Typically the normal flow rate for stimulated saliva is 1-2 mL/min. Values less than 0.1 mL/min are xerostomic, however reduced flow may be measured but not always associated with complaints of dry mouth.13

The majority of xerostomia seen in a dental patient is medication induced. Dry mouth is one of the most common side effects of over 400 commonly used prescription medications.14 The majority of the medications with xerogenic side effects include antihistamines, antidepressants, anticholenergics, anorexiants, antihypertensives, antipsychotics, anti-Parkinson agents, diuretics and sedatives. A very large population of patients are on one or more of these medications. It should be noted that while there are many drugs that affect the quantity and/or quality of saliva, the side effects generally are not a permanent condition.8

The most common disease associated with xerostomia is Sjogren’s syndrome. Sjogren’s syndrome is a chronic inflammatory autoimmune disease that occurs predominately in postmenopausal women. Approximately 3% of Americans suffer from Sjogren’s syndrome, 90% of these patients being women with a mean age of 50 years old.15

Many other diseases also may cause xerostomia. These include rheumatoid arthritis, systemic lupus erythematosus, scleroderma, diabetes mellitus, hypertension and cystic fibrosis. Other conditions such as bone marrow transplantation, endocrine disorders, nutritional deficiencies, nephritis, thyroid dysfunction and neurological disorders such as Bell’s palsy, cerebral palsy and stroke can all have a xerostomic element. Xerostomia can also be exacerbated by activities including mouth breathing, smoking, alcohol consumption, hyperventilation, and CPAP usage for sleep apnea.10, 11
Xerostomia is the most common toxicity associated with standard fractionated radiation therapy to the head and neck. Acute xerostomia from radiation is due to an inflammatory reaction, while late xerostomia, which can occur up to one year after radiation therapy, results from fibrosis of the salivary gland and is usually a permanent condition. Radiation causes changes in the serous secretory cells, resulting in a reduction in serous salivary output thus increasing the viscosity of the saliva. A common complaint following radiation therapy is thick or sticky saliva. The degree of permanent xerostomia depends on the volume of salivary gland tissue exposed to radiation and the dose of radiation. When the total dose exceeds 5200 cGy, salivary flow is reduced and little or no saliva is expressible from the salivary ducts. These changes are typically permanent.

Certain chemotherapeutic drugs may also cause xerostomia but the condition is usually temporary.

The risks of infection from the normal oral flora are high among patients experiencing xerostomia from radiation therapy and/or chemotherapy. Oral ulcerations can become the nidus of invasive gram-positive and gram-negative infections, and opportunistic infections by fungal organisms such as candida albicans. Since 1968, it has been argued and established in the scientific community that S. mutans bacteria in the oral cavity is the major etiologic agent of dental caries. We also know that pH plays a significant role in the pathological shifts of the biofilm in the oral cavity: the lower the pH of the saliva, the degree of permanent xerostomia depends on the volume of salivary gland tissue exposed to radiation and the dose of radiation. When the total dose exceeds 5200 cGy, salivary flow is reduced and little or no saliva is expressible from the salivary ducts. These changes are typically permanent.

In a case with normal salivary flow, you see a normal pH (6.5 – 7.1). As much as 1.7 liters of saliva is secreted into the oral cavity each day. Also, the highest flow is found in mid-afternoon and the lowest flow usually around 4:00 AM. The pH value of saliva will continuously change, becoming more acidic with the introduction of foods and beverages, especially those with fermentable carbohydrates; i.e., foods and drinks with high sugar contents. In a healthy, non-xerostomic situation, the pH will return to its normal range in approximately 30 – 60 minutes because of the natural buffering capacity of the saliva. With normal salivary flow, as foods are introduced and the pH decreases, the levels of supersaturation of calcium and phosphate ions also decreases. Thus, the risk of demineralization of tooth structure increases. While there is no exact pH at which demineralization begins, we do know that a pH range from 5.0–5.5, is considered critical for tooth minerals to dissolve. But with normal salivary flow, the supersaturation levels of calcium and phosphate ions will renew and reduce the likelihood of demineralization of the tooth structure.

Conversely, in the case of xerostomia, with diminished or no salivary flow, there is already a low pH. With less saliva, the acidic and acedogenic bacteria flourish in higher concentrations. Therefore, a low flow of saliva generally means a lower pH. Reduced salivary flow also means a lower renewal rate of bicarbonate ions so the buffering effect seen in normal saliva is diminished. Additionally, low pH and diminished salivary flow means a loss of the normal renewal rate of calcium and phosphate ions. In a xerostomic situation, there is a greater risk of dental caries because the tooth structure is at high risk for demineralization. This demineralization occurs in an environment with an elevated population of S. mutans bacteria, the primary etiologic agent in dental caries.

There is a wide variety of products on the market, both OTC and prescription, that have been designed to support the xerostomia patient. Most OTC products are rinses, pastes or lozenges containing glycerin, glycols, and fluoride as active agents. Some of these products are acidic, having a pH of 6.0 or less. A supersaturated calcium phosphate rinse containing sodium bicarbonate may help re-adjust the overall conditions in a xerostomic oral cavity to conditions similar to a healthy oral cavity. Supersaturated calcium phosphate rinse will allow for active correction of pH, buffering capacity, remineralization and soft tissue healing by its mechanism of action.

Severe manifestations of xerostomia are found predominantly in radiation and Sjogren’s patients. The question arises regarding which xerostomic patients might benefit from using supersaturated calcium phosphate rinse?

A 2013 study by the author was designed to evaluate the effectiveness of supersaturated calcium phosphate rinse on dental patients with varying degrees of xerostomia. Thirty xerostomic patients and thirty non-xerostomic dental patients (control group) were tested for:

1) Elevated levels of S. mutans bacteria ( > 500,000 CFU/ml were considered elevated in this study).
2) Salivary pH (salivary pH levels of 6.4 or less were considered acidic for this study).
3) Patients were asked to fill out a dry mouth questionnaire regarding the severity of symptoms of xerostomia they were experiencing. They were asked to rate the ability to swallow, drink, eat, talk, and taste on a scale from 0 (no limitation noted) to 4 (unable to perform).
4) Patients were instructed to rinse with supersaturated calcium phosphate rinse 2-3 times per day for 28 days. Patients were monitored at 7 day intervals by phone.
5) Patients were retested at 28 days for S. mutans levels, and salivary pH. Patients were also asked to repeat the dry mouth questionnaire.
The results of the study were as follows:

<table>
<thead>
<tr>
<th>S. mutans population</th>
<th>Initial baseline sample</th>
<th>28 day sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group</td>
<td>&lt;$500,000 cfu/ml</td>
<td>&lt;$500,000 cfu/ml</td>
</tr>
<tr>
<td>Test Group</td>
<td>&gt;$500,000 cfu/ml</td>
<td>&lt;$500,000 cfu/ml</td>
</tr>
</tbody>
</table>

**AVERAGE SALIVARY pH**

<table>
<thead>
<tr>
<th></th>
<th>Initial baseline sample</th>
<th>28 day sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>7.1</td>
<td>7.2</td>
</tr>
<tr>
<td>Test group</td>
<td>5.9</td>
<td>7.0</td>
</tr>
</tbody>
</table>

**Dry mouth questionnaire:**

**Control group:**
- No changes

**Test group:**
- 90% noted improvement in swallowing
- 93% noted improvement in drinking
- 80% noted improvement in eating
- 90% noted improvement in talking
- 86% noted improvement in dysgeusia

It should be noted that of the patients recruited for this study only one was post-radiation in the head and neck region and none were Sjogren’s syndrome patients. The majority (all but one) were dental patients with a typical complaint of dry mouth. Most of these patients were on one or more prescription medications. These were the type of patient one sees on a regular basis in any dental office.

This data shows that pathogenic levels of S. mutans bacteria were present at degrees of severity lower than the extreme degree of severity associated with post-head and neck radiation patients and Sjogren’s patients. More importantly, the results indicate that within this patient population, the regular use of supersaturated calcium phosphate rinse reduced the levels of salivary S. mutans bacteria, provided movement towards a normal salivary pH and a generalized improvement in the relief of symptoms associated with xerostomia.

Patient management of xerostomia in the dental setting should be a primary concern of the dental practitioner. The secondary effects of xerostomia are all detrimental to the overall health of the oral cavity. By managing complaints of dry mouth and interviewing patients that are on one or more prescription medications, it may be possible for the dental practitioner to not only alleviate the subjective symptoms of xerostomia but also the manage the oral microflora by buffering the salivary pH and thus, limit the population of S. mutans bacteria to non-pathogenic levels. It is important for dental professionals; dentist and dental hygienist alike, to realize the importance of supersaturated calcium phosphate rinse as a dentifrice and part of normal preventative care for many patients. The beneficial effects of supersaturated calcium phosphate rinse to the xerostomia patient are well established by research.

The mechanisms of action of supersaturated calcium phosphate rinse are as follows:

1. The action of the calcium and phosphate ions to promote healing of painful/inflamed tissues by permeating the intercellular spaces of the injured epithelial tissues.
2. The action of the calcium and phosphate ions in a supersaturated concentration to promote and maintain healthy tooth structure by supplying the minerals needed to prevent demineralization.
3. The action of sodium bicarbonate ions to buffer the salivary pH which, in turn, helps maintain non-pathogenic levels of salivary S. mutans bacteria in the oral cavity.

A large population of dental patients may benefit from the use of such a rinse. Applications of supersaturated calcium phosphate rinse may be extrapolated to case specific situations. For instance, the non-compliant orthodontic patient; rinsing with supersaturated calcium phosphate rinse on a regular basis might help prevent demineralization of tooth structure and decay. Other patients who may benefit include patients with GI problems such as acid reflux, which can cause changes to the pH of the oral cavity and in turn, change the levels of pathogenic S. mutans bacteria. There are many dental case scenarios where the mechanism of action of supersaturated calcium phosphate rinse may be applicable.

Supersaturated calcium phosphate rinse is not a cure for xerostomia but it may be a powerful adjunct in the care and maintenance of xerostomotic patients. Supersaturated calcium phosphate rinse can also be an adjunct to the care and maintenance of any patient whose symptoms might benefit from the additional presence of calcium, phosphate and/or sodium bicarbonate ions.

**References**

2. NeutraSal product label. Invado Pharmaceuticals LLC.
7. Barretts C, PharmD, assistant professor, pharmacy practice, School of Pharmacy and Allied Health Sciences, University of Montana: Helping Patients with Dry Mouth
9. CDHA. Xerostomia/dry Mouth.[wwwdocument] (oct 25, 2000) [pubmed]
12. (FoxKI. Sjogren syndrome: new approaches to treatment. [wwwdocument] [n.d.2/1/01]. See www.medscape.com/medscapr/rheumatology/treatmentupdate/2000/tu01/par-tu01.html.)
Questions

1. The agent that provides the buffering capacity of supersaturated calcium phosphate is:
   a. Calcium phosphate
d. None of the above
b. Sodium bicarbonate
c. Salimetrics

d. Calcium chloride
c. All of the above

2. The two products that were developed to prevent and treat xerostomia and oral mucositis secondary to head and neck radiation and chemotherapy both contain:
   a. Sodium phosphate
d. Both a & b
b. Calcium chloride
c. Sodium chloride
d. All of the above

3. How long is it recommended a patient rinse with a half portion of the supersaturated calcium phosphate rinse?
   a. 30 seconds
c. <500,000 cfu/ml
d. 0.5-1 mL/min
b. >250,000 cfu/ml
d. 0.5-1 mL/min

c. 60 seconds
d. <500,000 cfu/ml

4. How often can a patient rinse with the supersaturated calcium phosphate rinse in one day?
   a. 3 times
c. 2-4 times
d. 3-4 times
c. 1-2 times
d. 1-2 times

5. The functions of saliva include:
   a. Lubrication and protection of oral tissues
   b. Buffering action and clearance of acids
   c. Maintenance of tooth integrity and antibacterial activity
   d. All of the above

6. Saliva affects the growth and survival of which cariogenic bacteria that are present in the oral cavity?
   a. M. mutans
c. D. melaninogenica
d. S. mutans
b. B. subtilis
d. A. naeslundii
c. S. salivarius

7. The inorganic/organic compounds that make up saliva are:
   a. Sodium bicarbonate
d. Calcium and phosphate ions
c. Proteins and glycoproteins
d. All of the above

8. The supersaturated calcium phosphate rinse contains which of the following ingredients?
   a. Sodium bicarbonate
   b. Calcium and phosphate ions
c. Proteins and glycoproteins
d. Both a & b

9. Sodium bicarbonate as a buffering agent is important in the management of xerostomia because:
   a. Salivary pH in a xerostomia patient is almost always acidic
c. Salivary pH in a xerostomia patient is almost always basic
d. Both a & b
c. Salivary pH in a xerostomia patient is almost always neutral
d. None of the above

10. Acceptable levels of S. mutans are:
    a. >500,000 cfu/ml
c. <500,000 cfu/ml
d. 0.5-1 mL/min
d. Both a & b

11. Which of the following helps maintain and strengthen tooth structure and promote healing of soft tissues?
    a. Calcium and phosphate ions
c. Sodium and bicarbonate ions
d. None of the above
b. Calcium and phosphate ions
c. Sodium chloride
d. None of the above

12. Xerostomia is defined as:
    a. A disease of dry mouth
c. Disease of dry mouth
d. None of the above
b. Dry mouth resulting from reduced or absent salivary flow

c. Dry mouth that is age related
d. All of the above

13. Signs and symptoms of xerostomia include:
    a. Patient complaints of problems eating, speaking, swallowing
c. Patient complaints of soft tissues sticking together
d. An increase in caries
d. None of the above
b. Causes of tooth pain
d. Side effects of over 400 prescription medications

14. The office technique used to measure the flow rate of stimulated saliva is:
    a. Sialometry
c. Sialod-ons
d. None of the above
b. Salivics
c. Salivometrics
d. None of the above

d. None of the above

15. The normal flow rate for stimulated saliva is:
    a. 2-3 mL/min
c. 1-2 mL/min
d. 3-4 mL/min
d. 0.5-1 mL/min

16. The oral mucosa in xerostomia patients is typically:
    a. Clean, dry, unsticky, with no dental caries
   b. Wet and unsticky
c. Erythematous and wet
d. Dry and sticky

17. Rinsing with supersaturated calcium phosphate:
    a. Helps restore electrolytes naturally found in the oral cavity
   b. Helps buffer acidic levels
c. Helps heal soft tissue lesions
d. All of the above
b. Helps reduce number of cariogenic bacteria

c. Helps promote healing of soft tissues
d. All of the above

18. Dental caries associated with xerostomia can be found at the cervical margin or:
    a. The occlusal portion of the teeth
   b. The exposed root surface of any tooth
c. The unexposed root surface of bicuspids
d. Buccal surfaces of molar teeth

19. Dry mouth is one of the most common:
    a. Complaints from young adults
   b. Problems for dentists
c. Causes of tooth pain
d. Side effects of over 400 prescription medications

20. The most common condition associated with xerostomia is:
    a. Sjogren’s syndrome
   b. SLE
c. DM
d. HTN
California Provider number is 4527. The cost for courses ranges from $20.00 to $110.00.

PennWell is a California Provider. The credits. The formal continuing education program of this sponsor is accepted by the AGD for Fellowship/
All participants scoring at least 70% on the examination will receive a verification form verifying 2 CE credits. The formal continuing education program of this program provider is accepted by the AGD for Fellowship/Membership. The formal continuing education programs of this program provider are accepted by the AGD for Fellowship/Membership and Membership revalidation credit. The formal continuing education programs of this program provider are accepted by the AGD for Fellowship, Membership and Membership revalidation credit. Completion of the formal continuing education program does not imply acceptance by a state or provincial board of dentistry.

Requirements for successful completion of the course and to obtain dental continuing education credits: 1) Read the entire course. 2) Complete all information above. 3) Complete answer sheets in either pen or pencil. 4) Mark only one answer for each question. 5) A score of 70% on this test will earn you 2 CE credits. 6) Complete the Course Evaluation below. 7) Make check payable to PennWell Corp.

If Questions Call 216.398.7822

PennWell maintains records of your successful completion of any course for a minimum of six years. Please contact our offices for a copy of your continuing education credits report. This report, which will list all credits earned to date, will be generated and mailed to you within five business days of receipt.

Completing a single continuing education course does not provide enough information to give the participant the level of expertise in the field related to the course topic. It is a combination of many educational and clinical experiences that allows the participant to develop skills and expertise.

For IMMEDIATE results, go to www.ineedce.com to take tests online.
Answer sheets can be faxed with credit card payment to (440) 845-3447, (216) 398-7922, or (216) 255-6619.

If paying by credit card, please complete the following:
□ Payment of $49.00 is enclosed.
(Checks and credit cards are accepted.)

If not taking online, mail completed answer sheet to:
Academy of Dental Therapeutics and Stomatolgy,
A Division of PennWell Corp.
P.O. Box 116, Chesterland, OH 44026
or fax to: (440) 845-3447

We encourage participant feedback pertaining to all courses. Please be sure to complete the survey included with the course. Please mail all questions to hhodges@pennwell.com.

All questions should have only one answer. Grading of this examination is done manually. Participants will receive continuation of credit by receipt of verification form. Institutions of Participant forms will be mailed within two weeks after taking examination.

Educational Objectives

1. Differentiate the contents of supersaturated calcium phosphate rinse
2. Explain the effects of supersaturated calcium rinse on soft and hard tissues
3. Correlate the downward spiral of xerostomia effects on the oral cavity
4. Formulate patient recommendations to manage and maintain oral health using supersaturated calcium phosphate rinse in the xerostomic and other patients as well.

Course Evaluation

1. Were the individual course objectives met?
   Objective #1: Yes No Objective #3: Yes No
   Objective #2: Yes No Objective #4: Yes No

Please evaluate this course by responding to the following statements, using a scale of Excellent = 5 to Poor = 0.

2. To what extent were the course objectives accomplished overall?
   Score: S 4 3 2 1 0

3. Please rate your personal mastery of the course objectives.
   Score: S 4 3 2 1 0

4. How would you rate the objectives and educational methods?
   Score: S 4 3 2 1 0

5. How do you rate the author's grasp of the topic?
   Score: S 4 3 2 1 0

6. Please rate the instructor's effectiveness.
   Score: S 4 3 2 1 0

7. Was the overall administration of the course effective?
   Score: S 4 3 2 1 0

8. Please rate the usefulness and clinical applicability of this course.
   Score: S 4 3 2 1 0

9. Please rate the usefulness of the supplemental webliography.
   Score: S 4 3 2 1 0

10. Do you feel that the references were adequate?
    Yes No

11. Would you participate in a similar program on a different topic?
    Yes No

12. If any of the continuing education questions were unclear or ambiguous, please list them.

13. Was there any subject matter you found confusing? Please describe.

14. How long did it take you to complete this course?
    __________

15. What additional continuing dental education topics would you like to see?
    __________

PLEASE PHOTOCOPY ANSWER SHEET FOR ADDITIONAL PARTICIPANTS.

PROVIDER INFORMATION

PennWell is an ADA CERP Recognized Provider. ADA CERP is a service of the American Dental Association to assist dental professionals in identifying quality providers of continuing dental education. ADA CERP does not approve or endorse individual courses or instructors, nor does it imply acceptance of credit hours by boards of dentistry. Consumers or complaints about a CE Provider may be directed to the provider or to ADA CERP at www.ada.org/cerp.

The PennWell Corporation is designated as an approved PACE Program Provider by the Academy of General Dentistry. The formal continuing dental education programs of this program provider are accepted by the AGD for Fellowship, Membership and Membership revalidation credit. Approval does not imply acceptance by a state or provincial board of dentistry or AGD endorsement. The current term of approval extends from 11/1/2011 to 10/31/2015 (Provider ID# 12345).

CANCELLATION/REFUND POLICY

Any participant who is not 100% satisfied with this course can request a full refund by contacting PennWell in writing.

© 2014 by the Academy of Dental Therapeutics and Stomatolgy, a division of PennWell

www.ineedce.com

COURSE EVALUATION and PARTICIPANT FEEDBACK

An extensive continuing education program of this program provider is accepted by the AGD for Fellowship, Membership and Membership revalidation credit. The formal continuing education programs of this program provider are accepted by the AGD for Fellowship, Membership and Membership revalidation credit. The form of continuing education program of this program provider is accepted by the AGD for Fellowship, Membership and Membership revalidation credit. Approval does not imply acceptance by a state or provincial board of dentistry or AGD endorsement. The current term of approval extends from 11/1/2011 to 10/31/2015 (Provider ID# 12345).