The iTero optical scanner for use with Invisalign: A descriptive review

A Peer-Reviewed Publication Written by Dr. Perry Jones

Abstract
Optical/digital scanning technology now replaces conventional VPS impression taking. The tooth movement technology of Invisalign can now be used with digital data derived from the iTero scanning device, improving accuracy, patient communication, streamlining work flow and reducing aligner delivery time. This article will review the development of the iTero technology, describe the iTero unit, and outline the differences in current scanning technologies. New iTero v4.05 enhancements and software such as the new “Simulated Outcome” tool are described in this article. The benefits of the iTero scanning device are detailed for both patient and practitioner. As highly accurate iTero polyurethane plastic models may be used to eliminate the stone medium, the article details many practical uses for these models, for example, as a matrix for the use of various thermoplastic materials. Model and modeless restorative solutions as well as the use of STL files will be discussed.

Learning Objectives:
The overall objective of this article is to provide information on the iTero optical/digital scanning device. Its development, physical features, scanning technology differences, model/ modeless restorative solutions, use of STL files, iTero v4.05 software features/tools as well as Outcome Simulator. After reading this article the reader should be able to:
1. Briefly describe the development of the iTero optical/ digital scanning device.
2. Describe the physical features of the iTero scanner.
3. Discuss the difference in scan technology.
4. Describe the uses of polyurethane models.
5. Describe the features of model and modeless restorative solutions.
6. Discuss the use of iTero STL files.
7. Describe the tools and use of the Invisalign “Outcome Simulator.”

Author Profile
Dr. Perry E. Jones is the Director of Continuing Education and Faculty Development at Virginia Commonwealth University, School of Dentistry where he is also Associate Professor, Adjunct Faculty, Department of Oral and Maxillofacial Surgery. He is a Fellow of the Academy of General Dentistry and Director of the Virginia VCU/AGD MasterTrack program. He has been a member of the Align Technology Speaker TEAM since 2002 presenting more than 250 Invisalign presentations. Dr Jones has been involved with Cadent/ Itero optical scanning technology since its first release and was a beta tester for the iTero v4.05 software. Dr Jones belongs to numerous dental organizations and maintains a private practice in Richmond, VA.

Author Disclosure
The author of this course has no commercial ties with the sponsors or the providers of the unrestricted grant of this course.

Go Green, Go Online to take your course
This course has been made possible through an unrestricted educational grant.

PennWell is an ADA CERP recognized provider
ADA CERP is a service of the American Dental Association to assist dental professionals in identifying quality providers of continuing dental education. ADA CERP does not approve or endorse individual courses or instructors, nor does it accept responsibility for their conduct. Questions or complaints about a CE provider may be directed to the provider or to ADA CERP at www.ada.org/gdhs/cerp.
PennWell designates this activity for 2 Continuing Educational Credits.

Supplement to PennWell Publications
This course was written for dentists, dental hygienists and assistants, from novice to skilled.

Educational Methods: This course is a self-instructional journal and web activity.

Provider Disclosure: PennWell does not have a leadership position or a commercial interest in any products or services discussed or shared in this educational activity nor with the commercial supporter. No manufacturer or third party has had any input into the development of course content.

Requirements for Successful Completion: To obtain 2 CE credits for this educational activity you must pay the required fee, review the material, complete the course evaluation and obtain a score of at least 70%.

CE Planner Disclosure: Michelle Fox, CE Coordinator does not have a leadership or commercial interest with Align Technologies, the commercial supporter, or with products or services discussed in this educational activity.

Educational Disclaimer: Completing a single continuing education course does not have a leadership or commercial interest with Align Technologies, the commercial supporter, or with products or services discussed in this educational activity. No manufacturer or third party has had any input into the development of course content.

Registration: The cost of this CE course is $49.00 for 2 CE credits.

Cancellation/Refund Policy: Any participant who is not 100% satisfied with this course can request a full refund by contacting PennWell in writing.
Educational Objectives

The overall objective of this article is to provide information on the iTero optical/digital scanning device. Its development, physical features, scanning technology differences, model/modeless restorative solutions, use of STL files, iTero v4.05 software features/tools as well as Outcome Simulator. After reading this article, the reader should be able to:

1. Briefly describe the development of the iTero optical/digital scanning device.
2. Describe the physical features of the iTero scanner.
3. Discuss the difference in scan technology.
4. Describe the uses of polyurethane models.
5. Describe the features of model and modeless restorative solutions.
6. Discuss the use of iTero STL files.
7. Describe the tools and use of the Invisalign “Outcome Simulator.”

Abstract

Optical/digital scanning technology now replaces conventional VPS impression taking. The tooth movement technology of Invisalign can now be used with digital data derived from the iTero scanning device, improving accuracy, patient communication, streamlining workflow and reducing aligner delivery time. This article will review the development of the iTero technology, describe the iTero unit, and outline the differences in current scanning technologies. New iTero v4.05 enhancements and software such as the new “Simulated Outcome” tool are described in this article. The benefits of the iTero scanning device are detailed for both patient and practitioner. As highly accurate iTero polyurethane plastic models may be used to eliminate the stone medium, the article details many practical uses for these models, for example, as a matrix for the use of various thermoplastic materials. Model and modeless restorative solutions as well as the use of STL files will be discussed.

Introduction

Align Technology has delivered significant technological advances to the field of tooth movement as evidenced by the Invisalign clear aligner products. Recently released innovations termed G3 and G4 deliver Invisalign providers sophisticated movement systems derived from laboratory testing. The FMA or Force Measurement Apparatus helps Align’s R&D engineers, develop and test planned movements, to produce more predictable at-

mentments and adjustments. The “impression” experience was often unpleasant for both patient and doctor.

Today, digital impressions, such as those delivered by the Align iTero TM scanner, are providing practices with superior accuracy, cost savings, patient satisfaction, restorative solutions, implant solutions and orthodontic solutions as well as supporting multiple practical uses of polyurethane models.

New software enhancements offer users the ability to scan full arches for Invisalign submission. Submission time is dramatically reduced with ClinCheck treatment plans posted in 2-3 days. Features such as an eraser tool and missed data highlight outline tool, further aid users in the efficient capture of full arch scans.

Development of the digital scanning devise

Simultaneous with the advances in development of CAD/CAM technology, development of an optical scanning devise dates back several decades. Although industry has used many different computer aided design and computer aided manufacturing (CAD/CAM) systems, there has been only one system available to the dental practitioner for taking direct intraoral digital impressions for several past decades. The CEREC system was developed as a one visit in-office scanning and milling system to produce ceramic restorations from prefabricated ceramic “blocks”. The much different Cadent system developed an in–office intraoral optical scanning unit that used digital data sent via the internet to a centralized milling center, or a specific dental laboratory. As the concept of digital impression taking has become more popular, other systems such as E4D, Den sys 3D, Lava C.O.S. and TRIOS have been developed with many others likely to soon reach the market place. This article is intended to give a descriptive review of the iTero scanning technology as well as give an overview of the features and benefits of the iTero system.

Development of the iTero scanning system

Cadent history dates back to the 1995-1999 period when formation and early development began in Israel by veterans of Technomatrix (NASDAQ: TCNO). The first commercial product was released in 2001 with a successful digitized scanning system, termed OrthoCAD. This devise allowed conventional stone models to be scanned to produce 3-D computer images. The scanned data could then be used to archive model information, create virtual tooth set-ups, as well as fabrication of urethane models and orthodontic bracket placement applications. This unit is now termed the iOC unit (Figure 1), and it is marketed primarily to the Orthodontic community.

Development continued with introduction of iTero (Figure 2) intra-oral scanning as outlined in (Figure 3). To summarize Cadent development: In 2006 Cadent
launched the iTero Digital Impression System with quadrant scans and crown restorations, expanding in a few months with indications to include inlays/onlays. Cadent expanded restorative indications in 2007 to include 3/4 crowns, implant abutments and veneers. Measurement tools were added as well as a hardware upgrade to a quad processor for enhanced capture speeds.

Full arch scanning was added in 2008, with indications to include bridges, cantilever and bonded bridges. Upgrades included an enhanced video view window, improvements with a rapid scan technique, and milled reference models were made available for patients without restorative preparations. In 2009, the iTero user interface was upgraded to Windows XP, new software upgrades improved the display of the 3D image, enhanced algorithms for the occlusal clearance map and improved view control tools were added. The iOC powered by iTero orthodontic scanner and software applications was launched in 2010. In conjunction with Whipmix, iTero released a mounting system for Denar articulators (and now Hanau articulators). In 2010, upgrades allowed modeless restorations to be produced in a 100% digital production workflow without a Cadent milled model.
In 2011 Cadent partnered with implant companies and dental laboratories such as Glidewell Dental Laboratory, to develop fixture level implant scanning with dedicated scan bodies available for different implant systems. The current iTero v 4.05 software was released with full arch scan capability expanded to Invisalign.

Description of the iTero digital scanning devise
The iTero devise consists of a mobile cart measuring about 29 inches in height, 26 inches in width and 15 inches in depth (Figure 4). It is mounted on caster wheels to facilitate moving the unit between operatories. There is a hand held scanner wand attached to the cart via a cord to carry scan data to the unit. A battery is contained in the unit to allow an uninterrupted power supply such that the unit may be unplugged from the AC power source and moved to different locations. The iTero unit has a dedicated wireless router that will send a wireless signal to a modem devise thus allowing internet connection capability. A wireless “mouse” and a sealed keyboard on the horizontal surface support data entry, allowing disinfection techniques to be used (Figure 5). Images are displayed on a 19 inch liquid crystal display (LCD) attached to the mobile iTero cart.

A wireless foot control/foot pedal may be used to enter data and navigate the system, allowing the operator to enter data remotely. This may free the operator’s hands to hold the scanner wand, bypassing the keyboard and/or wireless mouse, allowing a single operator to manage the unit.

A hand held scanning wand is used in the patient’s mouth to collect the scan data. The video “camera” contains the laser light source, the focusing motor and analogue to digital converters. The camera is balanced with a “notch” for the operator’s hand at the optimal balance point (Figure 6). Inexpensive single use disposable sleeves, designed to fit over the “camera” end of the scanning wand, help prevent patient cross contamination (Figure 7). The scanner sleeve is very useful as a retraction aid for cheeks, tongue, and soft-tissue, as well as offering a method to steady the camera. The optics of the iTero camera, allows a useful feature of resting the “sleeve” directly on the patient’s teeth or soft-tissue (Figure 8).
Accuracy Optimizes Results and Efficiency

Accuracy is essential to optimizing clinical results and efficiency, yet producing an accurate replica of the teeth has been a huge challenge. Varying impression materials, including plaster, rubber base material, polyether, reversible hydrocolloid, irreversible hydrocolloid, and VPS (vinyl polysiloxane) material have unique properties and idiosyncrasies, which make it difficult for dentists to produce consistently outstanding results. For example, impression taking with VPS is prone to pulls and tears; bubbles and voids; distortion; tray to tooth contact; poor tray bond; de-lamination; sensitivity to temperature, technique, time and chemistry; varying shrinkage; stone model pouring; and die trimming discrepancies (Figures 9, 10).

The Align iTero scanning technology eliminates these issues. It does not require any powder, powder dusting or accent frosting, regardless of the type of scan or restoration desired. The full arch scanning and detailed coronal reproduction required for Invisalign submission mandate a high-quality scan with interproximal detail and accuracy. The iTero powder-free technology delivers highly accurate digital impressions of the interproximal areas and ensures arch width dimensional stability.

Accurate reproduction of the coronal portion of the teeth often requires retakes. Studies indicate that about 1/3 of dentists retake impressions three or more times per month, and on average, one-third of dentists reappoint patient impression taking at least once a month (26). Studies have shown iTero optical scanning dramatically reduces retakes (27).

Technology Enables Flexibility

There are two different digital scanning technologies available to the dental scanning industry; parallel/confocal and triangulation sampling (Figure 11). The iTero’s scanner’s parallel/confocal scanning technology uses laser and optical scanning to digitally capture teeth, gingival surfaces and contours.

The operative principle used in the iTero scanner is called “parallel confocal”. A light source passes through a small filtering pinhole which focuses the light on the target object. The light then reflects off of the object and only the reflected light that is in focus passes back through the pinhole. Reflected light will be blocked if not in the confocal plane. Only reflected light that is in focus will return through the filtering mechanism. Better images are produced, as out of focus information is rejected and depth of field control is enhanced.

Figure 8: Resting on teeth to steady image capture

Figure 9: Margin inaccuracy/ Distal run/ Material run/ Tray show through

Figure 10: Margin inaccuracy/ Material separation/ Inaccurate margin/ Tray separation

Figure 11: Triangulation sampling vs. Parallel confocal

Other scan systems (CEREC/ E4D)

Triangulation Sampling
- Angled cone of light
- Triangulation of light
- Requires powder dusting

Parallel Confocal
- 100,000 points laser light
- Out of focus light rejected
- No power dusting

www.ineedce.com
iTero captures 100,000 points of laser light in perfect focus at 300 focal depths in a 14 x18 mm pattern, producing a 15mm scan depth. An analogue to digital converter in the camera wand, acts to convert the reflected light into digital data in about 1/3 of a second, with an accuracy of 15 microns. The confocal technology is a true optical scan, and does not require powder dusting.

In contrast, triangulation/ sampling technology, as used in devises such as CEREC or E4D, require a powder coating and apply one angled cone of light to capture a single image at 15,000 microns. The term is based on applying the theory of “triangulation of light” such that 3 beams of light intersect to locate a point in space. One of the problems with this technology is that various surfaces disperse light differently and this may affect the accuracy of the scan. In order to reduce this effect, triangulation sampling technology uses a thin coating of an opaque power such as a titanium dioxide/zirconium oxide mix to provide a uniform light dispersion to enhance the accuracy of the scans.

Powderless scanning and 360-degree visualization capabilities enable iTero to operate with surface contact in the scanning technique for highly accurate digital impressions. Accompanying analytical tools enable dentists to measure and verify design of the preparation. The doctor can use the scanner for almost any procedure, select the desired restoration material, and send the scan to a lab of choice. The iTero 4.05 software seems to produce a noticeably better aligner fit. This observation was further supported by a 2011 study, which found that 7 times fewer fit issues occurred with scanning versus impressions.

Improved Patient Experience

Traditional impression taking techniques are unpleasant at best. Patients object to the taste, tray size, bulky material and common gag reflex. Digital scanning eliminates all of these objections. In addition, iTero scanning enhances patient communication because patients can see their dentition on the computer screen as a real-time 3-D representation. The 3-D images are “cleaned” (Figure 12) with extraneous soft-tissue (such as tongue and cheeks) removed in real time without the necessity to send the images electronically to technicians in Israel, as was done in the past with the Cadent process. iTero scans are posted on the Invisalign Doctor Site (Figure 13) in minutes and ClinCheck treatment plans are posted for doctor review in 2-3 days, creating a much reduced time line for Invisalign delivery, resulting in overall aligner delivery time cut by almost one half. iTero software significantly accelerates the ClinCheck treatment plan, which greatly improves patient acceptance and communication.

iTero v 4.05/ Restoration with models

Digital scanning with iTero provides an open platform for creating highly accurate polyurethane models, instead of stone models, that any dental laboratory can use to create any indirect restoration. Current advances in laboratory technology can also use scanned data with CAD/CAM systems to produce modelless milled ceramic restorations. The absence of stone modeling offers a further cost offset versus conventional lab costs.

iTero 4.05 software can support restorative solutions with or without modeling. In the case of modeling, extremely accurate polyurethane models are created with precise dies that fit securely into position (Figure 14) unlike conventional stone modeling with die “wobble” often created from repetitive use during restoration fabrication. A single model functions as both a working model and soft tissue model (Figure 15). The soft-tissue is maintained with the die preparation to allow more accurate and efficient laboratory fabrication of all types of restorations. Models can be mounted using a precise hinge articulator or mounted on a semi-fixed articulator with custom mounting plates to Denar, Hanau and Whipmix articulators (Figure 16).
iTero v4.05/Modeless restoration
The iTero 4.05 software supports construction of modeless restorations that are CAD designed in a virtual, modeless environment and CAM milled from materials such as zirconium. Dental laboratories such as Glidewell, support use of iTero optical scanning, virtual planning, restoration design, and custom milling to create single unit, multiple units as well as bridges in a 100% “modeless” workflow environment (Figure 17). The process is streamlined such that lab fees may be reduced (Glidewell) when restorations are created modeless.

iTero v4.05/Implant restoration
Similarly, implant solutions are supported by the iTero 4.05 software, as purpose made scan bodies may be used with the iTero optical scanner. Digital scanning has advanced implant practice integration as implant companies such as Straumann and 3i have proprietary scan bodies and systems. Dental laboratories such as Glidewell have developed an “open” system of dedicated scan bodies to be used with the iTero optical scanner and 4.05 iTero software. Different unique scan bodies are referenced with a library of virtual implant analogues that fit different implant systems (Figure 18, 19).

Figure 14: Precise/secure seating iTero polyurethane model dies
Figure 15: iTero model: soft-tissue is maintained
Figure 16: iTero models mounted on Denar articulator
Figure 17: CAD design on iTero scanned data virtual model
Figure 18: Purpose made implant scan body on Nobel implant fixtures
Uses of Full Arch Polyurethane models

Full arch scanning allows very precise polyurethane models to be created for a multitude of uses, especially for the GP practice. Uses include: models used to fabricate full arch (Figure 20) thermoplastic appliances, canine to canine (Figure 21) appliances used to aid finishing, occlusal equilibration, occlusal “settling” as well as retention. Models may be used to create “pontic” appliances (Figure 22) used in conjunction with implant solutions, as well as models used to create prosthetic surgical guides (Figure 23). Polyurethane models may be used to fabricate occlusal guards (Figure 24), bleaching trays (Figure 25), and mouth guards (Figure 26). Provisionals (Figure 27), provisional bridges (Figure 28) and even limited removable partial dentures (as tissue scanning may allow) summarize possible uses of iTero urethane models supported by the iTero 4.05 software.

One of the most useful features of the urethane models is that they may be used multiple times, unlike stone models which are often useless after teeth break upon appliance removal. The iTero 4.05 software provides the practitioner with a wide variety of useful tools and features both for restorative solutions and orthodontic evaluation.
Merge of DICOM and STL files

Software development now enables merging of CBCT DICOM files with Align iTero STL files. Virtual “wax-up” and planning may be done to create surgical guides with simultaneous consideration of hard tissue and optimal restoration location. Users may use various third party CAD/CAM services such as implant planning services and digital labs for restorative and orthodontic treatment services. Generic STL files, the CAD/CAM standard format, can now be exported directly from user’s “My Aligntech” accounts.

The iTero software now supports direct export of STL files. This has opened fields such as the merge of CBCT DICOM files and iTero files to create 3-D renderings that support software such as Cybermed/ In-2-Guide, that support virtual planning of prosthetic restoration and crown down planning of hard tissue consideration to allow processing of tooth and soft tissues supported surgical guides. (Figures 29, 30, 31) demonstrate a tooth supported surgical guide made with the merge of CBCT DICOM files and iTero STL files. The pictures are from this author’s patient and depict the intraoral view, software planning and intra-oral guide placement of the In-2-Guide for placement of two Nobel Replace Select fixtures.
Increasing Practice Efficiency

Practice productivity is increased with the new iTero v4.05 enhancements because records and submission times are accelerated. For restorative productivity, restoration time is reduced by approximately 50% due to the iTero scanning accuracy and predictability. The scanner itself may be viewed as cost effective. For example, if we assume $500 of hourly production, an average 15 minutes of chair time saving would compute as $125 savings per production hour. If we assume only one scan per day, and a conservative estimate of 120 production days per year, that computes to a $12,500 to $16,250 savings per year. Even with a conservative model, one can make the case that the technology costs are quickly offset with the projected time savings.

Conclusion

Digital scanning with the Align Technology iTero system has greatly enhanced clinical accuracy, productivity, and flexibility for a wide variety of tooth movement/alignment and restorative procedures. Digital information can be used for Invisalign submission to create a significantly more efficient workflow. The iTero 4.05 software presents sophisticated software tools that can be used for detailed orthodontic diagnosis and analysis. The iTero 4.05 software helps improve patient communication. Precise polyurethane models offer a wide variety of uses especially in the general dentist practice. Digital scan impressions with the iTero 4.05 software offer real time on-screen visualization and a much improved patient experience with no impression mess. iTero 4.05 offers an open architecture software platform with the ability to use digital data to fabricate all types of restorations from single unit to multiple units. The iTero 4.05 powderless impressions provide digital data that supports the dental laboratory fabrication of any indirect restoration from provisionals, all metal (gold), porcelain fused to metal, porcelain full, partial veneer coverage to inlays/onlays of any type material.. The iTero technology supports modeless restorations that are now routine offering improved accuracy, which results in time and cost savings. Implants may be scanned with dedicated scan bodies to create screw or cement retained model or modeless restorations. The merging of CBCT DICOM and iTero STL files offer virtual “waxup” and crown down planning to create precise tissue and tooth supported surgical guides. This article has attempted to present an overview of the features, uses and benefits of the iTero scanning technology. The future of scan technology and its benefits for the everyday practitioner are here today!

References

11. Priest G. Virtual-designed and computer-milled

Author Profile
Dr. Perry E. Jones is the Director of Continuing Education and Faculty Development at Virginia Commonwealth University, School of Dentistry where he is also Associate Professor, Adjunct Faculty, Department of Oral and Maxillofacial Surgery. He is a Fellow of the Academy of General Dentistry and Director of the Virginia VCU/AGD MasterTrack program. He has been a member of the Align Technology Speaker TEAM since 2002 presenting more than 250 Invisalign presentations. Dr Jones has been involved with Cadent/ iTero optical scanning technology since its first release and was a beta tester for the iTero v4.05 software. Dr Jones belongs to numerous dental organizations and maintains a private practice in Richmond, VA.

Author Disclosure
The author of this course has no commercial ties with the sponsors or the providers of the unrestricted grant of this course.

Reader Feedback
We encourage your comments on this or any PennWell course. For your convenience, an online feedback form is available at www.ineedce.com.
Online Completion
Use this page to review the questions and answers. Return to www.ineedce.com and sign in. If you have not previously purchased the program select it from the “Online Courses” listing and complete the online purchase. Once purchased the exam will be added to your Archives page where a Take Exam link will be provided. Click on the “Take Exam” link, complete all the program questions and submit your answers. An immediate grade report will be provided and upon receiving a passing grade your “Verification Form” will be provided immediately for viewing and/or printing. Verification Forms can be viewed and/or printed anytime in the future by returning to the site, sign in and return to your Archives Page.

Questions

1. Cadent’s development of an optical scanning devise began in ______ by Technomatrix veterans.
 a. United States
 b. Israel
 c. Iran
 d. Mexico

2. The original ______ scanning devise allowed conventional stone models to be scanned.
 a. OrthoPED
 b. OrthoCAM
 c. OrthoCAD
 d. CAMtech

3. In 2006 Cadent first launched iTero w/ ________ scans and crown restorations.
 a. full arch
 b. veneer
 c. implant
 d. quadrant

4. In 2011 Cadent full scan capability was expanded to ________ submissions.
 a. Invisalign
 b. Clear Correct
 c. Simpli 5
 d. Ortho Clear

5. The Cadent unit sits on __________ to allow the unit mobility.
 a. Fixed Legs
 b. Metal supports
 c. Caster wheels
 d. Adjustable rubber legs

6. A ______ is contained in the iTero unit to allow an uninterrupted power supply.
 a. Breaker switch
 b. Voltage meter
 c. Battery
 d. Power cord

7. A single operator may bypass the keyboard and mouse with a wireless __________.
 a. Foot control
 b. Modem
 c. Switch
 d. Camera

8. __________ placed on the camera end aid help prevent cross contamination.
 a. Plastic bags
 b. Glass covers
 c. Disposable sleeves
 d. Cloth inserts

9. The scanner sleeve may be used to directly rest on the patient’s _______ to steady the camera.
 a. Arm
 b. Face
 c. Hand
 d. Teeth

10. Impressions taken with VPS (vinyl polysiloxane) are prone to: ______________
 a. Shrinkage
 b. Distortion
 c. De-lamination
 d. All of the above

11. The iTero scanner uses ___________ digital scanning technology.
 a. Vertical infusion
 b. Triangulation sampling
 c. Parallel confocal
 d. Horizontal inversion

12. Only reflected light __________ is rejected by a filtering mechanism with parallel confocal.
 a. In focus
 b. Out of focus
 c. Between focus
 d. Spherical

13. ___________ scan technology requires powder dusting.
 a. Parallel confocal
 b. Triangulation sampling
 c. Ellipsoid sampling
 d. Square focus

14. The theory of “triangulation of light” applies _______ beams of light to locate a point in space.
 a. 1
 b. 2
 c. 3
 d. 6

15. Patients object to ________ with traditional impression techniques.
 a. Taste
 b. Tray size
 c. Gag reflex
 d. All of the above

16. The _______ may be used to manipulate individual teeth in a virtual model.
 a. Clinical Checker
 b. Outcome Simulator
 c. Alignment Stylus
 d. Movement Stylus

17. A single iTero polyurethane model can serve as both working model and ________ model.
 a. Soft tissue
 b. Refractory
 c. Inversion
 d. Porcelain

18. Custom plates allow semi-fixed articulators such as __________ to be used with iTero models.
 a. Hanau
 b. Dentar
 c. Whipmix
 d. All of the above

19. Implant solutions are supported by iTero as dedicated _______ bodies may be scanned.
 a. Scan
 b. Porcelain
 c. Dies
 d. Titanium

20. iTero polyurethane models may be used to create __________
 a. Thermoplastic appliances
 b. Prosthetic appliances
 c. Pontic appliances
 d. All of the above

21. Generic _______ iTero files may be exported directly from “My Align Tech” accounts.
 a. DICOM
 b. STL
 c. ADA
 d. AGD

22. Practice productivity is __________ with iTero 4.05 due to records and submission times being shortened.
 a. Increased
 b. Decreased

23. Digital scans with iTero v4.05 software offer benefits such as: __________.
 a. No impression mess
 b. Powder free scans
 c. Real-time on screen visualization
 d. All of the above

24. Merged CBCT DICOM and iTero STL files offer precise surgical guides for ________ placement.
 a. Implant
 b. Pin
 c. Post
 d. Impression
Educational Objectives
1. Briefly describe the development of the iTero optical/digital scanning device.
2. Describe the physical features of the iTero scanner.
3. Discuss the difference in scan technology.
4. Describe the uses of polyurethane models.
5. Describe the features of model and modelless restorative solutions.
6. Discuss the use of iTero STL files.
7. Describe the tools and use of the Invisalign "Outcome Simulator"

Course Evaluation
1. Were the individual course objectives met?
 Objective #1: Yes No Objective #2: Yes No
2. To what extent were the course objectives accomplished overall?
 5 4 3 2 1 0
3. Please rate your personal mastery of the course objectives.
 5 4 3 2 1 0
4. How would you rate the objectives and educational methods?
 5 4 3 2 1 0
5. How do you rate the author's grasp of the topic?
 5 4 3 2 1 0
6. Please rate the instructor's effectiveness.
 5 4 3 2 1 0
7. Was the overall administration of the course effective?
 5 4 3 2 1 0
8. Please rate the usefulness of the supplemental webliography.
 5 4 3 2 1 0
9. Do you feel that the references were adequate?
 Yes No
10. Would you participate in a similar program on a different topic?
 Yes No
11. If any of the continuing education questions were unclear or ambiguous, please list them.
12. Was there any subject matter you found confusing? Please describe.
13. How long did it take you to complete this course?
14. What additional continuing dental education topics would you like to see?
15. How do you rate the author's grasp of the topic?
 5 4 3 2 1 0

If not taking online, mail completed answer sheet to
Academy of Dental Therapeutics and Stomatology,
A Division of PennWell Corp.
P.O. Box 116, Chesterland, OH 44026
or fax to: (440) 845-3447

For IMMEDIATE results, go to www.ineedce.com to take tests online.
Answer sheets can be faxed with credit card payment to
(440) 845-3447, (216) 398-7922, or (216) 255-6619.
Payment of $49.00 is enclosed.
(Checks and credit cards are accepted.)

If paying by credit card, please complete the following:
MC Visa AmEx Discover

Charges on your statement will show up as PennWell

Please photocopy answer sheet for additional participants.

Customer Service 216.398.7822

© 2012 by the Academy of Dental Therapeutics and Stomatology, a division of PennWell