A Practical Guide To The Use Of Luting Cements

A Peer-Reviewed Publication
Written by John O. Burgess, DDS, MS and Taneet Ghuman, BDS

1850s
Zinc oxide eugenol

1900s
Zinc phosphate

1900s
Zinc carboxylate

1972
Glass ionomers

1992
Resin-modified glass ionomers

PennWell designates this activity for 3 Continuing Educational Credits

Go Green, Go Online to take your course

Publication date: June 2008
Review date: April 2011
Expiry date: March 2014

This course has been made possible through an unrestricted educational grant. The cost of this CE course is $59.00 for 3 CE credits.

Cancellation/Refund Policy: Any participant who is not 100% satisfied with this course can request a full refund by contacting PennWell in writing.
Educational Objectives
Overall goal: The purpose of this article is to provide dental professionals with information on the selection and application of luting cements.

Upon completion of this course, the clinician will be able to do the following:
1. List the types of luting cements and their chemical composition.
2. List the physical properties that affect the performance of luting cements.
3. List the applications for the various luting cements currently available.
4. Describe the physical properties, chemistry and application of self-adhesive luting cements.

Abstract:
Dentistry uses a wide range of cements to retain crowns, posts and fixed partial dentures to tooth structure. Dental practitioners should have a good understanding of the properties and categories of dental cements to ensure the long-term clinical performance of cemented restorations. Classes of dental cements have evolved from zinc phosphate to glass ionomers, resin modified glass ionomers, resin cements and lastly to self-adhesive resin cements. Self-adhesive resin cements require no bonding agents and simplify the cementation procedure. Since metal, porcelain-fused-to-metal, resin and all-ceramic restorations are used today, an understanding of cement performance is needed before selecting a material to use in a particular situation. This article gives a brief review of cement performance and introduces a new material to the class of self-adhesive resin cements.

Introduction:
History and Evolution of Dental Cements
Dental cements have evolved from humble beginnings. In the 1850s, the only cement available was zinc oxide eugenol. This was followed by the successive development of zinc phosphate cement in the early 1900s, zinc polycarboxylate cement in 1972 and resin modified glass ionomers in 1992 (Figure 1).

Figure 1. Development of dental cements

Description and Properties
Zinc Oxide Eugenol Cement
Zinc oxide eugenol cement is mixed using zinc oxide-based powder and eugenol liquid. Originally introduced as a weak setting powder and liquid, two changes made this cement a clinical success. The first change increased the strength of the mixed material, allowing it to be used for permanent cementation, and the second produced an easy-to-mix paste-paste system for provisional cementation that is still in use today. While the cement had an obtunding effect on pulp, its disadvantages, including a high film thickness, have limited its use. The physical properties of dental cements appear in Table 1.

Zinc Phosphate Cement
Zinc phosphate cement has enjoyed widespread success as a permanent luting agent. It is a two-bottle system composed of phosphoric acid liquid, and a mixture of zinc oxide and magnesium oxide powder. The pH of the newly mixed zinc phosphate is less than 2.0 but rises to 5.9 within 24 hours and is neutral (pH 7.0) by 48 hours. The working time can be prolonged by mixing the material on chilled glass slabs. Since zinc phosphate cement produces an exothermic reaction, mixing a small amount of the powder to the liquid and adding the remaining powder in small increments prolongs working time. A frozen mixing slab allows increased powder to be added to the mixture, which compensates for incorporating water collecting on the slab and increases working time without reducing cement strength. Even though its use has declined dramatically, it has a significant amount of clinical success associated with its use. Zinc phosphate serves as the standard by which newer cement systems are compared.

Zinc Polycarboxylate Cement
Zinc polycarboxylate cement was the first cement to bond to tooth structure. It consists of a powder containing zinc oxide and magnesium oxide, and a liquid composed of polyacrylic acid. Also known as zinc polyacrylate cement, its adhesive properties produce a bond to enamel and a weaker bond to dentin by a chelation reaction between the carboxyl groups of the cement and calcium in the tooth. Although still used, primarily by pediatric dentists and especially Durelon (3M ESPE, St. Paul, Minn.), its use has declined in recent years. Zinc polycarboxylate cement produces a mild pulpal reaction and forms a weak adhesive bond to the tooth. It has a short working time and greater solubility than other cements.

Glass Ionomer Cements
Glass ionomer cements were introduced as hybrids of silicate cements and polycarboxylate cements to produce a cement with characteristics of silicate cements (translucency and fluoride release) and polycarboxylate cements (chemically bond to tooth structure with a good seal). They consist of fluoroaluminosilicate glass and a liquid containing polyacrylic acid, itaconic acid and water. The development of glass-ionomer cements was first announced by Wilson and Kent. Glass ionomer cements are waterbased, have low solubility in the oral cavity, good working time, intermediate mechanical properties and excellent translucency. They
are among the most resistant to salivary contamination, but their handling and mixing characteristics make them difficult to use initially. The bond to tooth structure is significantly reduced when the tooth is excessively dried, which also contributes to post-cementation thermal sensitivity. Although still used today, since they produce retention rates similar to zinc phosphate, their use has declined.

Resin Modified Glass Ionomer Cements
Resin modified glass ionomers were formed by replacing part of the polyacrylic acid in conventional glass ionomer cements with hydrophilic methacrylate monomers. These dual- or tri-cured materials are popular luting agents and provide slightly greater bond strengths and release greater amounts of fluoride compared to conventional glass ionomer cements. However, a cement film of only 20–30μ is exposed at the marginal area after the restoration is cemented, and research has not shown reduced caries levels around restorations cemented with fluoride-releasing cements. The mechanical properties of all glass ionomers increase with time, which possibly contributes to their clinical success. These cements bond to tooth structure, have low microleakage when mixed properly and when applied to moist dentin produce little post-cementation thermal sensitivity.

Resin Cements
Resin cements vary in composition (paste-paste, single paste or powder liquid), curing mechanism (light cured, dual cured and chemically cured) and bonding mechanisms (total etch, self-etching). They are methacrylate-based and, depending on the curing mechanism, contain chemical and/or light initiators. Resin cements initially gained popularity due to their mechanical properties, the adhesion produced by the acid-etch technique to enamel and dentin, and their low solubility.

The bonding agent used with a resin cement should be compatible with the cement chemistry to ensure an optimal bond. Sanares first reported that the pH of a bonding agent could inhibit the polymerization of a chemically cured com-

Table 1: Physical Properties of Luting Cements

<table>
<thead>
<tr>
<th>Property</th>
<th>Ideal</th>
<th>ZnOE</th>
<th>ZnPO₄</th>
<th>PCC</th>
<th>GI</th>
<th>RMGI</th>
<th>Resin</th>
<th>SAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film thickness (mm)</td>
<td>25</td>
<td>≤ 25</td>
<td>≤ 25</td>
<td>< 25</td>
<td>< 25</td>
<td>> 25</td>
<td>> 25</td>
<td>> 25</td>
</tr>
<tr>
<td>Working time (min)</td>
<td>Long</td>
<td>2–3</td>
<td>1.5–5</td>
<td>1.75–2.5</td>
<td>2.3–5</td>
<td>2–4</td>
<td>3–10</td>
<td>0.5–5</td>
</tr>
<tr>
<td>Setting time (min)</td>
<td>Short</td>
<td>4–10</td>
<td>5–14</td>
<td>6–9</td>
<td>6–9</td>
<td>2</td>
<td>3–7</td>
<td>1–15</td>
</tr>
<tr>
<td>Setting reaction</td>
<td>Acid-based</td>
<td>Acid-based</td>
<td>Acid-based</td>
<td>Acid-based</td>
<td>Acid-based</td>
<td>Light and/or chemical plus acid-based</td>
<td>Light and or chemical</td>
<td>Light and chemical</td>
</tr>
<tr>
<td>Retention</td>
<td>High</td>
<td>Low–moderate</td>
<td>Moderate</td>
<td>Low</td>
<td>Moderate</td>
<td>Moderate–high</td>
<td>high</td>
<td>Moderate–high</td>
</tr>
<tr>
<td>Tensile strength (MPa)</td>
<td>N/A</td>
<td>—</td>
<td>3.1–4.5</td>
<td>3.6–6.3</td>
<td>4.2–5.3</td>
<td>13–24</td>
<td>34–37</td>
<td>37–41</td>
</tr>
<tr>
<td>Elastic modulus (GPa)</td>
<td>Dentin=13.7</td>
<td>Dentin= 84–130</td>
<td>5.4</td>
<td>13.2</td>
<td>4–4.7</td>
<td>11.2</td>
<td>—</td>
<td>17</td>
</tr>
<tr>
<td>Bond strength to dentin (MPa)</td>
<td>0</td>
<td>0</td>
<td>2.1</td>
<td>3–5</td>
<td>14–20*</td>
<td>16–10–12**</td>
<td>18–30*</td>
<td>5–12</td>
</tr>
<tr>
<td>Solubility in water (wt %)</td>
<td>Max. 0.2</td>
<td>0.04</td>
<td>0.06–0.2</td>
<td>< 0.05</td>
<td>1.25</td>
<td>0.07–0.4</td>
<td>0.13 < 1</td>
<td></td>
</tr>
<tr>
<td>Excess cement removal</td>
<td>Easy</td>
<td>Medium</td>
<td>Easy</td>
<td>Medium</td>
<td>Medium</td>
<td>Easy</td>
<td>Hard</td>
<td>Medium</td>
</tr>
</tbody>
</table>

*With bonding agent **Without bonding agent
posite core material. Currently the best results are obtained with a dual-cured cement and a light-cured or dual-cured bonding agent, such as Prime and Bond NT (DENTSPLY/Caulk), which is supplied with a self-cured activator that makes it compatible with dual-cured resin cements and restoratives. Dual-cured cements should be tested to ensure that the chemical curing mechanism is still functioning. A simple test is to mix the dual-cured resin cement, place it in the dark for eight minutes and then break it between the fingers. If the material fractures with a snap, the chemical cure is intact; if it bends before fracturing, the chemical cure has weakened; if it is soft, the chemical curing mechanism has expired.

Although resin cements provide more retention than conventional cements, their use is associated with difficult cleanup and multiple steps for bonding. All-ceramic crowns require increased tooth preparation and have been associated with tooth sensitivity after cementation. Clinical surveys have reported that postoperative sensitivity within the first year after crown cementation with resin cements occurred in about 37 percent of patients. Postoperative tooth sensitivity has been associated with cements and crown cementation since the use of zinc phosphate cement. In the case of resin bonding cements, it appears that the reason for the sensitivity is failure to seal the dentinal tubules opened by phosphoric acid etching. It seems more likely that a combination of poor technique and lack of proper isolation has led to this increase in sensitivity rather than irritation associated with dental cements.

When using resin cements, properly bonded and sealed indirect restorations are retentive, long-lasting durable restorations. Bonded resin cements are particularly useful in clinical situations where retention of crowns or fixed partial dentures is compromised.

Applications

Zinc Oxide Eugenol, Zinc Phosphate Cements

The high film thickness of zinc oxide eugenol cements makes them unsuitable for the cementation of many contemporary indirect restorations. Use of zinc phosphate and polycarboxylate cements has also declined as cement options and types of indirect restorations, especially ceramic restorations requiring bonding, have increased.

Glass Ionomer Cements

Glass ionomer cements are used mainly to cement metal and metal-ceramic restorations with adequate retentive and resistance form. They are contraindicated for low-strength all-ceramic restorations.

Resin Modified Glass Ionomer Cements

Resin modified glass ionomer cements have a successful history of use for metal, metal ceramic and high-strength ceramic restorations (those with alumina and zirconia cores) as well as for metal and composite fiber posts. Although some reports have indicated that resin modified glass ionomer cements may cause ceramic cracking, this is not the case. These cements are acceptable to use with high-strength ceramic restorations. Leevaloj et al. measured the fracture incidence of In-Ceram and VitaDur Alpha porcelain jacket crowns cemented with five luting agents (Fuji I, Fuji Plus, Vitremer, Advance and Panavia 21) on prepared premolar teeth. During a two-month storage in saline, no cracks occurred with In-Ceram regardless of the cement used, demonstrating that resin modified glass ionomers can be used with high-strength ceramic materials. Resin modified glass ionomers provide adequate retention with preparations with poor retention and resistance form.

Table 2 lists indications for dental cements.

<table>
<thead>
<tr>
<th>Table 2: Indications For Luting Cements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restoration</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Cast crown, metal-ceramic crown, FPD</td>
</tr>
<tr>
<td>Crown or FPD with poor retention</td>
</tr>
<tr>
<td>Metal ceramic crown with porcelain margin</td>
</tr>
<tr>
<td>Pressed, high-leucite or feldspathic ceramic crown</td>
</tr>
<tr>
<td>Ceramic inlay</td>
</tr>
<tr>
<td>Ceramic veneer</td>
</tr>
<tr>
<td>Resin-retained FPD (Maryland Bridge)</td>
</tr>
<tr>
<td>Cast post and core</td>
</tr>
<tr>
<td>Composite fiber post</td>
</tr>
</tbody>
</table>

Resin Cements

Resin cements are the most versatile and widely used cements for nonmetallic restorations, resin-bonded fixed partial dentures, ceramic crowns and porcelain veneers, as well as ceramic and resin composite inlays and onlays.

Esthetic resin composite cements are used for veneers and are supplied in multiple shades, viscosities and esthetic try-in pastes. With thin ceramic veneers (0.4–0.8 mm), the shade of the veneer may be altered using these cements. A water-soluble try-in paste of the selected shade is used to verify the desired adjustment of the veneer’s shade by placing the try-in paste into the veneer and temporarily seating it on the tooth. The correct shade is verified, and the same shade resin cement is used to cement the veneer.

Bonding of high-strength ceramic crowns will increase crown retention to teeth with short clinical crowns such as those that have been reduced more occlusally to provide space for ceramic posterior restorations. Resin cements with a dentin bonding agent have provided a threefold increase in crown retention on teeth with short clinical crowns compared to using zinc phosphate cement. In the same study, retention was also improved using a resin cement for overtapered crown preparations compared to zinc phosphate cement. Patients should be advised not to clench or grind their teeth immediately after restorations have been cemented with chemically activated resin cements, because early bond strengths are low and need 24 hours to fully mature. Excess cement should be removed before resin cements set to avoid damaging the weaker early bond.

When using a total etch cement, the enamel margins must be etched carefully before applying the etchant to dentin to prevent overetching. The primer or primer adhesive combination must be applied with agitation to moist dentin and then thoroughly dried. After drying, the tooth surface should appear shiny. If not, another layer of primer is applied and dried followed by a layer of unfilled resin. Since the adhesive layer must be light cured to achieve high bond strengths, a bonding agent producing a low film thickness (Prime and Bond NT (DENTSPLY/Caulk, Milford, DE) or Single Bond (3M ESPE)) is recommended. Thorough light curing of this layer is critical before applying the mixed cement over it. Using self-etch cements (Panavia, Kuraray) reduces the number of steps compared to total-etch cements; however, using self-etching cements when bonding to ungrounded enamel requires that the enamel be etched as a separate step.

Surface treatment of ceramics prior to resin cement use

One area sometimes overlooked yet critical to the outcome of cementing indirect restorations is the surface treatment of the restoration itself. The surface treatment of ceramics depends upon the composition and strength of the ceramic material. Options include etching, sandblasting or the use of the Rocatec/Cojet technique (3M ESPE).

Etching

Etching is effective only for silica-containing materials (feldspathic porcelain and lithium disilicate- and leucite-containing ceramics). Care should be taken to use the appropriate etching time and etch correctly, as it is possible to overetch and reduce the bond of the cement to the ceramic. The etching time (20 seconds to two minutes) is specific for each ceramic. For lithium disilicate (Empress materials), a 20-second etch time with 5 percent HF is recommended by the manufacturer (Ivoclar) and is supported by research. Etching the intaglio (inner) surface increases the surface area available for bonding (Figure 2). An excellent review of preparing porcelain surfaces for bonding has recently been authored by Alex.

Sandblasting or treatment with the Rocatec system (3M ESPE) can be used on the intaglio surface prior to bonding high-strength ceramic materials such as Procera All Ceram (Nobel Biocare, Yorba Linda, Calif.), Cercon (DENTSPLY) or LAVA (3M ESPE). Sandblasting increases the surface area of the intaglio surface of the restoration. For high-strength core materials, a light dusting of alumina particles of less than 50μ for short periods (five seconds) is recommended. Sandblasting is not recommended for low-strength ceramics as it can weaken the restoration.

The Rocatec Soft or Cojet Sand system is an effective method for increasing the bond to high-alumina cores, feldspathic porcelain and zirconia core materials. It coats the cementing surface of the ceramic restoration with silica using a 30- or 110-micron silica particle coated with alumina. Silane is then applied to this layer and dried thoroughly. The silane bonds to the silica coated on the ceramic, which bonds to the resin cement. By this mechanism a high-strength non-silica-containing ceramic restoration is bonded to the tooth.

Surface treatment of ceramics prior to resin cement use

One area sometimes overlooked yet critical to the outcome of cementing indirect restorations is the surface treatment of the restoration itself. The surface treatment of ceramics depends upon the composition and strength of the ceramic material. Options include etching, sandblasting or the use of the Rocatec/Cojet technique (3M ESPE).

Etching

Etching is effective only for silica-containing materials (feldspathic porcelain and lithium disilicate- and leucite-containing ceramics). Care should be taken to use the appropriate etching time and etch correctly, as it is possible to overetch and reduce the bond of the cement to the ceramic. The etching time (20 seconds to two minutes) is specific for each ceramic. For lithium disilicate (Empress materials), a 20-second etch time with 5 percent HF is recommended by the manufacturer (Ivoclar) and is supported by research. Etching the intaglio (inner) surface increases the surface area available for bonding (Figure 2). An excellent review of preparing porcelain surfaces for bonding has recently been authored by Alex.

Sandblasting or treatment with the Rocatec system (3M ESPE) can be used on the intaglio surface prior to bonding high-strength ceramic materials such as Procera All Ceram (Nobel Biocare, Yorba Linda, Calif.), Cercon (DENTSPLY) or LAVA (3M ESPE). Sandblasting increases the surface area of the intaglio surface of the restoration. For high-strength core materials, a light dusting of alumina particles of less than 50μ for short periods (five seconds) is recommended. Sandblasting is not recommended for low-strength ceramics as it can weaken the restoration.

The Rocatec Soft or Cojet Sand system is an effective method for increasing the bond to high-alumina cores, feldspathic porcelain and zirconia core materials. It coats the cementing surface of the ceramic restoration with silica (Figure 3) using a 30- or 110-micron silica particle coated with alumina. Silane is then applied to this layer and dried thoroughly. The silane bonds to the silica coated on the ceramic, which bonds to the resin cement. By this mechanism a high-strength non-silica-containing ceramic restoration is bonded to the tooth.

Surface treatment of ceramics prior to resin cement use

One area sometimes overlooked yet critical to the outcome of cementing indirect restorations is the surface treatment of the restoration itself. The surface treatment of ceramics depends upon the composition and strength of the ceramic material. Options include etching, sandblasting or the use of the Rocatec/Cojet technique (3M ESPE).
Resin cements are also popular for metal and resin fiber post cementation. In one study, the use of resin cements with dentin bonding agents improved post retention when the length of the prepared post space was less than ideal. A recent report by Hess et al. on an in vitro short-term study found that fiber posts cemented with self-adhesive cements in endodontically treated teeth provide good retention.

Self-Adhesive Cements — A New Category

Self-adhesive cements are the newest category of resin cements. They are dual-cured and can be used most effectively when bonding to dentin. They are esthetically suitable for cementing all-ceramic crowns and porcelain inlays and onlays. Unlike resin cements, these materials require no intermediate steps to bond to enamel and dentin. A separate adhesive bonding agent is not required, saving time and simplifying the procedure.

Self-adhesive cements contain acrylic or diacrylate monomers and specific adhesive monomers that are sufficiently acidic to produce their self-adhesive properties. Self-adhesive cements leave the dentin smear layer and produce an intermediate bond to dentin compared with total etch cements. The cement acidity needed to etch the tooth lasts only briefly, and near neutrality is achieved over a short time period. Reports of reduced cold sensitivity after cementation using these materials have been recorded, while other studies have shown no difference between self-adhesive and total etch cements.

Self-adhesive cements have been evaluated clinically and have a successful clinical history. Powers reported that Unicem (3M ESPE), the first self-adhesive cement to appear on the market, has been evaluated over a four-year period in more than 4,400 restorations, with 1,560 available for recall. Less than 1.8 percent of the restored teeth had occasional temperature sensitivity, while marginal staining (graying at the margins) was seen in 4.2 percent of the cases.

Self-adhesive cements are dual cured, and it has been reported that dual-cured cements have reduced bond strengths in the self-cured mode. For this reason, it is prudent to light cure all dual-curing cements at accessible restorative margins. This practice should improve marginal integrity, and may increase wear resistance and reduce staining. Bond strengths to tooth structure seem to vary with the specific material. Some of these cements appear to be sensitive to overwetting and overdrying, which lowers their bond strengths. With most if not all cements in this category, the bond to enamel is improved when an etchant and bonding agent are applied. In contrast to the effects observed on enamel, it has been our experience with at least one of these cements that when dentin is etched with phosphoric acid or a bonding agent is applied, the bond decreases.

Crown retention values have been reported by Palacios et al. and Cakir et al. In both studies, standardized preparations were made on extracted human molars. Zirconium oxide copings (Procera All-Zirkon or Cercon) were fabricated and sandblasted with Al₂O₃. Copings were cemented using a self-adhesive cement (Panavia F 2.0 and ED Primer A & B), a resin modified glass ionomer cement (Rely X Luting) or a self-adhesive composite resin (Rely X Unicem). In the Cakir study, seven self-adhesive cements were compared, with no thermocycling. In the Palacios et al. report, the specimens were thermocycled for 5,000 cycles, with a 15-second dwell time. The copings in both studies were removed using a tensile load until failure. In both studies, the highest retention rates were reported for the self-etching resin cement and the self-adhesive cement. The predominant mode of failure was cement remaining principally on the zirconium oxide copings, demonstrating that the bond to the tooth was weaker than the ceramic bond.

Recent Developments

A new self-adhesive cement has recently been developed (SmartCem™2, DENTSPLY/Caulk). This cement contains resins that provide structural reinforcement of the cement and that also offer strong cross-link bonding following polymerization. It is based on Prime and Bond chemistry, containing the phosphoric acid modified monomer PENTA, which has been shown to bond chemically as well as mechanically by interacting chemically with the calcium contained in the tooth structure. A unique initiator system with a patent pending promotes physical properties, enhances both shelf and shade stability and provides a gel phase during the setting reaction which results in easy clean-up procedures.
In vitro studies have shown the material to have high bond strengths to enamel and dentin; high retentive strength in crown-pull studies; and high bond strengths to indirect restorative materials including composite, base metal, noble metal and all-ceramic materials (Ceron and Finesse). Other studies have found no microleakage at either the enamel or dentin interface; minimal water solubility and sorption; and expansion over a six-month period in water storage of less than 1.0 percent.

Clinical Use of Self-Adhesive Cements — Case Studies

The following case demonstrates the use of self-adhesive cement (SmartCem™2) for the luting of zirconia crowns. The patient, a 32 year-old male in good overall health, presented complaining of the poor esthetic appearance of the porcelain-fused-to-metal crowns on teeth #7 and #8, and gingival recession (Figure 5a). After evaluation, radiographs and discussion with the patient it was decided to replace the crowns with ceramic crowns reinforced with a zirconium core. After preparation and and fabrication of the zirconia cores, a try-in was performed to check their fit on the prepped teeth (Figure 5b). The final crowns were seated using the self-adhesive cement (Figure 5c) and excess cement was removed while it was still in the gel phase prior to final set (Figure 5d). The completed case provided excellent marginal integrity and superior esthetics (Figure 5e).

Summary

Over time, luting cements have evolved into stronger dental materials that are easier to use and can bond to tooth structure as well as the restorative material. Concurrently, indirect restorative materials have also evolved, offering a wider variety of materials and far more aesthetic solutions. With so many cements on the market and with new classes of materials emerging, it is critical to select a luting cement that meets the requirements of both the intraoral environment and the type of restoration. Perhaps the most versatile cements are the resin and self-adhesive resin cements since they are indicated for the widest variety of uses. Both provide bonding to tooth structure, and while self-adhesive cements offer extraordinary convenience, they should not be considered a substitute for traditional bonding cements in all situations. Just as self-
eth adhesives have not replaced total-etch adhesives, neither should it be expected that self-adhesive cements will replace traditional bonding cements.

Table 3 presents the advantages and disadvantages of all classes of cements discussed in this article.

References
8. Ibid.
27. Ibid.
He served as military consultant to the Surgeon General in General Dentistry and was Chairman of Dental Research and Dental Materials at Wilford Hall Medical Center. Dr. Burgess is a diplomat of the Federal Services Board in General Dentistry and the American Board of General Dentistry. He is a Fellow of the Academy of Dental Materials and the American College of Dentists, and an elected member of The American Academy of Esthetic Dentistry and The American Restorative Academy. He is a member of the Academy of Operative Dentistry, The American and International Associations for Dental Research, the Alabama Dental Association and the ADA. A dedicated researcher he has served as the principal investigator on industrial, foundation, state and national grants. Dr. Burgess is the author of over 300 journal articles, textbook chapters and abstracts and has presented more than 800 continuing education programs nationally and internationally. Dr. Burgess is an active investigator on clinical trials evaluating posterior composites, adhesives, fluoride releasing materials, impression materials and class 5 restorations. He maintains a part-time practice in general dentistry. He has been happily married to Patricia for more than 30 years.

Taneet Ghuman, BDS

Dr. Ghuman graduated with a Bachelor’s degree in Dental Surgery from M.R. Ambedkar Dental College & Hospital, Bangalore, India in 2006. She is pursuing her Masters in Clinical Dentistry, specializing in Dental Biomaterials at UAB and will graduate in 2009. She is a graduate assistant with Dr. John O. Burgess, her advisor. She is a member of the Indian Dental Association, Dental Council of India, Bangalore Academy of Periodontology, American Association of Dental Research, International Association of Dental Research & Alabama Academy of Science. She is active in in-vitro trials on Dental cements, Bonding agents, Restorative Materials and Impression materials. Upon completion of her Masters, Dr. Ghuman intends to continue her work in the field of Dental Materials.

Acknowledgment

The clinical case in this article contains clinical images courtesy of Dr. Amaury M. Silveira.

Disclaimer

The author(s) of this course has/have no commercial ties with the sponsors or the providers of the unrestricted educational grant for this course.

Reader Feedback

We encourage your comments on this or any PennWell course. For your convenience, an online feedback form is available at www.ineedce.com.
1. In the 1850s, the only cement available was a. zinc oxide ethanol.
 b. zinc oxide eugenol.
 c. magnesium oxide eugenol.
 d. none of the above.

2. Resin modified glass ionomer cements were introduced in________.
 a. 1972.
 b. 1982.
 d. 2002.

3. Zinc oxide eugenol cement________.
 a. is the cement of choice today.
 b. has an obtunding effect on the pulp.
 c. has a high film thickness.
 d. b and c.

4. Zinc phosphate cement________.
 a. is a two-bottle system composed of phosphoric acid liquid, and a mixture of zinc oxide and magnesium oxide powder.
 b. produces an exothermic reaction.
 c. has a significant amount of clinical success associated with its use.
 d. all of the above.

5. The first cement to bond to tooth structure was________.
 a. zinc phosphate.
 b. zinc polycarboxylate.
 c. glass ionomer.
 d. none of the above.

6. The development of glass-ionomer cements was first announced by________.
 a. Wilson and Dent.
 b. Wilson and Kent.
 c. Wilson and McIntosh.
 d. none of the above.

7. Glass ionomer cements have________.
 a. low solubility in the oral cavity.
 b. excellent translucency.
 c. good working time.
 d. all of the above.

8. Zinc polycarboxylate cement has a________ than other cements.
 a. longer working time and lower solubility.
 b. longer working time and lower solubility.
 c. short working time and lower solubility.
 d. short working time and greater solubility.

 a. similar to.
 b. superior to.
 c. inferior to.
 d. none of the above.

10. Resin modified glass ionomers were formed by replacing part of the________ in conventional glass ionomer cements with hydrophilic methacrylate monomers.
 a. hydrochloric acid.
 b. polyacrylic acid.
 c. acetic acid.
 d. none of the above.

11. Resin modified glass ionomers release________ conventional glass ionomer cements.
 a. less fluoride compared to.
 b. more fluoride compared to.
 c. the same amount of fluoride.
 d. none of the above.

12. Resin cements________ curing mechanism(s).
 a. all have the same.
 b. vary in their.
 c. each have multiple.
 d. none of the above.

13. Dual-cured cements should be tested to ensure that the________ curing mechanism is still functioning.
 a. biochemical.
 b. mechanical.
 c. chemical.
 d. all of the above.

14. The range for the compressive strength of resin modified glass ionomer cements is________.
 a. 30-131 MPa.
 b. 40-141 MPa.
 c. 40-151 MPa.
 d. 200-200 MPa.

15. The range for the compressive strength of resin cements is________.
 a. 184-200 MPa.
 b. 194-200 MPa.
 c. 194-200 Pma.
 d. 30-131 Pma.

16. All-ceramic crowns require________ tooth preparation and have been associated with tooth sensitivity after cementation.
 a. minimal.
 b. increased.
 c. decreased.
 d. none of the above.

17. Bonded resin cements are particularly useful in clinical situations where retention of crowns or fixed partial dentures is________.
 a. superior.
 b. compromised.
 c. not required.
 d. a and b.

18.__________ is suitable for the cementation of feldspathic ceramic crowns.
 a. Zinc oxide eugenol cement.
 b. Zinc phosphate cement.
 c. Resin bonding.
 d. all of the above.

19. Glass ionomer cements are used mainly to cement________.
 a. metal and all-ceramic restorations with adequate retentive and resistance form.
 b. metal and metal-ceramic restorations with adequate retentive and resistance form.
 c. metal and metal-ceramic restorations with poor retentive and resistance form.
 d. none of the above.

20. Resin modified glass ionomer cements________ be used for high-strength ceramic restorations.
 a. can.
 b. should not.
 c. should always.
 d. none of the above.

21.__________ are used for veneers and are supplied in multiple shades, viscosities and esthetic try-in pastes.
 a. Esthetic resin composite cements.
 b. Esthetic glass ionomer cements.
 c. Esthetic zinc phosphate cements.
 d. none of the above.

22. Resin cements with a dentin bonding agent have provided a________ increase in crown retention on teeth with short clinical crowns compared to using zinc phosphate cement.
 a. twofold.
 b. threefold.
 c. fourfold.
 d. fivefold.

23. Sandblasting__________.
 a. can be used on the intaglio surface prior to bonding high-strength ceramic materials.
 b. is not recommended for low-strength ceramics.
 c. increases the surface area of the intaglio surface.
 d. all of the above.

24. Etching is__________ silica-containing materials (feldspathic porcelain and lithium disilicate- and leucite-containing ceramics).
 a. never effective for.
 b. effective mainly for.
 c. effective only for.
 d. none of the above.
Questions

25. Self-adhesive cements ________.
 a. are the newest category of resin cements
 b. are esthetically suitable for cementing all-ceramic crowns and porcelain inlays and onlays
 c. require no intermediate steps to bond to enamel and dentin
 d. all of the above

26. It is ________ to light-cure all dual-curing cements at accessible restorative margins.
 a. unnecessary
 b. necessary
 c. prudent
 d. none of the above

27. A cement containing phosphoric acid modified monomer PENTA has been shown to ________.
 a. bond mechanically
 b. interact with the organic material at the tooth surface
 c. interact chemically with the calcium contained in the tooth structure
 d. a and c

28. Excess self-adhesive cement can be removed during the ________ phase.
 a. working
 b. hydrophobic
 c. gel
 d. none of the above

29. ________ requires enamel etch for optimal bond to enamel.
 a. Zinc phosphate
 b. Zinc carboxylate
 c. Glass ionomer cement
 d. none of the above

30. The selection of a luting cements must consider ________.
 a. the physical properties of the cement
 b. the esthetic properties of the cement for esthetic restorations
 c. the material and type of restoration being cemented
 d. all of the above

31. The intaglio refers to the ________.
 a. outer surface of a gold alloy
 b. outer surface of a cast gold crown
 c. inner surface of a feldspathic porcelain restoration
 d. all of the above

32. Resin bonding can be used for a ________.
 a. metal ceramic crown
 b. veneer
 c. Maryland bridge
 d. all of the above

33. A composite fiber post can be cemented using ________.
 a. polycarboxylate cement
 b. resin bonding
 c. zinc oxide eugenol
 d. a and b

34. A crown with poor retention should be cemented using ________.
 a. a glass ionomer cement
 b. resin bonding
 c. polycarboxylate cement
 d. a or c

35. ________ can be used prior to bonding high-strength ceramic materials.
 a. Laser roughening
 b. Sandblasting
 c. Cortication
 d. all of the above

36. In one study of self-adhesive cements, it was found that the bond to the tooth was ________ the ceramic bond.
 a. weaker than
 b. as strong as
 c. stronger than
 d. none of the above

37. Over time, luting cements have become ________.
 a. complicated
 b. weaker
 c. stronger
 d. a and b

38. Indirect restorative materials now offer ________.
 a. a wider variety of materials
 b. a narrower range of materials
 c. far more esthetic solutions
 d. a and c

39. Long parallel preparation walls are needed when using ________.
 a. resin bonding
 b. self-adhesive cement
 c. zinc phosphate cement
 d. all of the above

40. Zinc oxide eugenol has the advantage of offering ________.
 a. high bond strength
 b. biocompatibility
 c. water sorption
 d. all of the above

41. The disadvantage of zinc phosphate cement is its ________.
 a. low retention
 b. requirement for hand mixing
 c. low water sorption
 d. a and b

42. Total etch composite resin offers ________.
 a. low solubility
 b. opacity
 c. high refraction
 d. all of the above

43. Self-adhesive cement has a ________ compared to total etch cement.
 a. higher bond strength
 b. higher compressive strength
 c. lower bond strength
 d. a and b

44. Water sorption can be a disadvantage of ________.
 a. zinc oxide eugenol cement
 b. resin modified glass ionomer cement
 c. zinc phosphate cement
 d. all of the above

45. Total etch composite resin cement requires ________.
 a. only one step
 b. bonding resin
 c. moisture control
 d. b and c

46. Solubility is an issue with ________.
 a. zinc oxide eugenol cement
 b. glass ionomer cement
 c. polycarboxylate cement
 d. all of the above

47. Self-etch adhesives have replaced ________.
 a. resin bonding
 b. etch-and-rinse adhesives
 c. total etch adhesives
 d. none of the above

48. Self-etch adhesives contain ________.
 a. acrylic
 b. monomers
 c. eugenol
 d. a and b

49. Resin cements may be ________.
 a. paste-paste
 b. powder-liquid
 c. single paste
 d. all of the above

50. ________ has an acid-based setting reaction.
 a. Self-adhesive cement
 b. Resin adhesive
 c. Glass ionomer cement
 d. all of the above
A Practical Guide To The Use Of Luting Cements

Requirements for successful completion of the course and to obtain dental continuing education credits: 1) Read the entire course. 2) Complete all information above. 3) Complete answer sheets in either pen or pencil. 4) Mark only one answer for each question. 5) A score of 70% on this test will earn you 3 CE credits. 6) Complete the Course Evaluation below. 7) Make check payable to PennWell Corp. For Questions Call 216.398.7822

Educational Objectives
1. List the types of luting cements and their chemical composition.
2. List the physical properties that affect the performance of luting cements.
3. List the applications for the various luting cements currently available.
4. Describe the physical properties, chemistry and application of self-adhesive luting cements.

Course Evaluation
Please evaluate this course by responding to the following statements, using a scale of Excellent = 5 to Poor = 0.

1. Were the individual course objectives met?
 Objective #1: Yes No
 Objective #2: Yes No
 Objective #3: Yes No
 Objective #4: Yes No

2. To what extent were the course objectives accomplished overall? 5 4 3 2 1 0

3. Please rate your personal mastery of the course objectives. 5 4 3 2 1 0

4. How would you rate the objectives and educational methods? 5 4 3 2 1 0

5. How do you rate the author's grasp of the topic? 5 4 3 2 1 0

6. Please rate the instructor's effectiveness. 5 4 3 2 1 0

7. Was the overall administration of the course effective? 5 4 3 2 1 0

8. Do you feel that the references were adequate? Yes No

9. Would you participate in a similar program on a different topic? Yes No

10. If any of the continuing education questions were unclear or ambiguous, please list them.

11. Was there any subject matter you found confusing? Please describe.

12. What additional continuing dental education topics would you like to see?

If not taking online, mail completed answer sheet to
Academy of Dental Therapeutics and Stomatology,
A Division of PennWell Corp.
PO. Box 116, Chesterland, OH 44026
or fax to: (440) 845-3447

PLEASE PHOTOCOPY ANSWER SHEET FOR ADDITIONAL PARTICIPANTS.

For IMMEDIATE results, go to www.ineedce.com and click on the button "Take Tests Online." Answer sheets can be faxed with credit card payment to (440) 845-3447, (216) 398-7922, or (216) 255-6619.

Quiz Directions
- Payment of $59.00 is enclosed.
- (Checks and credit cards are accepted.)
- If paying by credit card, please complete the following:
 - Exp. Date: ___________________
 - Charge $__________
- Charges on your statement will show up as PennWell

AGD Code 017, 610

CANCELLATION/REFUND POLICY
- PennWell maintains records of successful completion of any program. Participants requesting a refund must write to PennWell within 30 days of receipt.

EDUCATIONAL DISCLAIMER
- Answer sheets are not accepted after the course deadline.
- No inquiries will be taken after the due date.
- All credits earned to date, will be generated and mailed to you within five business days of receipt.

INSTRUCTIONS
- If taking online, please answer the questions according to the directions on the computer. When you have completed the course, please click on the "take test now" button to complete the course and receive your certificate of completion. Please contact PennWell at 216.398.7822 or e-mail macheleg@pennwell.com.